CMS-Flow:Transport Formula

From CIRPwiki
Jump to navigation Jump to search

Lund-CIRP

Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended load under combined waves and currents. These are refered to as the Lund-CIRP transport formulas. The general transport formulas can be used for both symmetric and asymmetric waves but for simplicity the waves are assumed to be symmetric in CMS. The bed load transport rate including the stirring effect of waves is given by

The current-related bed load transport with wave stirring is given by \begin{equation} \tag{1}

\frac{q_{b}}{\sqrt{(s-1) g d_{50}^3}} = a_c \sqrt{\theta_c} \theta_{cw,m}\exp{  \biggl ( -b_c \frac{\theta_{cr}}{\theta_{cw}}} \biggr ) 

\end{equation}

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle q_{b}} is in m^2/s, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d_{50}} is the median grain size, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle s} is the sediment specific gravity or relative density, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g} is gravitational constant, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta_{cw,m}} and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta_{cw}} are the mean and maximum Shields parameters due to waves and currents respectively, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta_{c}} , Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta_{cr}} is the critical Shields parameter due to currents, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a_c} and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b_c} are empirical coefficients.

The current-related suspended load transport with wave stirring is given by \begin{equation} \tag{2}

\frac{q_s}{\sqrt{ (s-1) g d_{50}^3 }} = U c_R \frac{\varepsilon}{\omega_s} \biggl[ 1  - \exp{ \biggl( - \frac{w_s h}{\varepsilon}} \biggr) \biggr]  

\end{equation}

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U} is the depth-averaged current velocity, is the total water depth, is the sediment fall velocity, is the sediment diffusivity, and is the reference bed concentration. The reference bed concentration is calculated from \begin{equation} c_R = A_{cR} \exp{ \biggl( - 4.5 \frac{\theta_{cr}}{\theta_{cw}}} \biggr) \end{equation}

where the coefficient is given by \begin{equation} A_{cR} = 3.5 \times 10^3 \exp{ \bigl( - 0.3 D_{*} } \bigr) \end{equation}

where the kinematic viscosity of water, and the dimensionless grain size \begin{equation} \tag{5} D_{*} = d_{50} \biggl[ \frac{(s-1) g}{ \nu} \biggr] \end{equation}

The sediment fall velocity is calculated using the formula by Soulsby (1997) \begin{equation} \tag{6}

\omega_s = \frac{\nu}{d} \bigg[ \big( 10.36^2 + 1.049 D_{*}^3 \big)^{1/2} -10.36  \bigg] 

\end{equation}

The sediment mixing coefficient is calculated as \begin{equation} \tag{7}

\epsilon = h \biggl( \frac{k_b^3 D_b + k_c^3 D_c + k_w^3 D_w}{\rho} \biggr)^{1/3}

\end{equation}

where are coefficients, is the wave breaking dissipation, and and are the bottom friction dissipation due to currents and waves respectively. For more details see Camenen and Larson (2008).

van Rijn

The van Rijn (1984ab) transport equations are used with the recalibrated coefficients of van Rijn (2007ab) are given by \begin{equation} \tag{8}

 q_b = 0.015 \rho_s U h 
  \biggl( \frac{U_e - U_{cr} }{ \sqrt{(s-1) g d_{50}} } \biggr)^{1.5} 
  \biggl( \frac{d_{50}}{h} \biggr)^{1.2} 

\end{equation}

\begin{equation} \tag{9}

 q_s = 0.012 \rho_s U d_{50} 
 \biggl( \frac{U_e - U_{cr} }{ \sqrt{(s-1) g d_{50}}} \biggr)^{2.4} 
 D_{*}^{-0.6} 

\end{equation}

where is the critical depth-averaged velocity for initiation of motion, is the effective depth averaged velocity calculated as in which is the peak orbital velocity based on the significant wave height

The critical velocity is estimated as \begin{equation} \tag{10} U_{cr} = \beta U_{crc} + (1-\beta) U_{crw} \end{equation}

where and are the critical velocity for currents and waves respectively. As in van Rijn (2007), the critical velocity for currents and waves are calculated based on Komar and Miller (1975):

\begin{equation} \tag{11}

 U_{crc} = 
 \begin{cases} 

0.19 (d_{50})^{0.1} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.1 \le d_{50} \le 0.5 mm \\

8.5 (d_{50})^{0.6} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.5 \le d_{50} \le 2.0 mm
 \end{cases}

\end{equation}

\begin{equation} \tag{12}

 U_{crw} = 
 \begin{cases} 

0.24 [(s-1)g]^{0.66} (d_{50})^{0.33} T_p^{0.33} , & \text{for } 0.1 \le d_{50} \le 0.5 mm \\ 0.95 [(s-1)g]^{0.57} (d_{50})^{0.43} T_p^{0.14}, & \text{for } 0.5 \le d_{50} \le 2.0 mm

 \end{cases}

\end{equation}

According to van Rijn (2007) bed load transport formula predicts transport rates with a factor of 2 for velocities higher than 0.6 m/s, but underpredicts transports by a factor of 2-3 for velocities close to initiation of motion.

Watanabe

The equilibrium total load sediment transport rate of Watanabe (1987) is given by \begin{equation} \tag{13}

q_{t} = A_w \biggl[ \frac{(\tau_{b,max} - \tau_{cr}) U }{\rho g } \biggr] 

\end{equation}

where is the maximum shear stress, is the critical shear stress of incipient motion, and is an empirical coefficient typically ranging from 0.1 to 2.

The critical shear stress is determined using \begin{equation} \tag{14} \tau_{cr} = (\rho_s - \rho) g d \phi_{cr} \end{equation}

In the case of currents only the bed shear stress is determined as where is the current friction factor. The friction factor is calculated as where is the Nikuradse equivalent sand roughness obtained from .

If waves are present, the maximum bed shear stress is calculated based on Soulsby (1997) \begin{equation}

\tag{15} \tau_{max} = \sqrt{(\tau_m + \tau_w \cos{\phi})^2  + (\tau_w \sin{\phi})^2 } 

\end{equation}

where is the mean shear stress by waves and current over a wave cycle, math> \tau_w </math> is the mean wave bed shear stress, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \phi } is the angle between the waves and the current. The mean wave and current bed shear stress is \begin{equation} \tag{16}

 \tau_{m} = \tau_c \biggl[ 1 +  1.2 \biggl( \frac{\tau_w}{\tau_c + \tau_c} \biggr)^{3.2} \biggr]  

\end{equation}

The wave bed shear stress is given by Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \tau_{w} = \frac{1}{2}\rho g f_w U_w^2 } where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_w } is the wave friction factor, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U_w } is the wave orbital velocity amplitude based on the significant wave height.

The wave friction factor is calculated as (Nielsen 1992) Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f_w = \exp{5.5R^{-0.2}-6.3}} where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R } is the relative roughness defined as Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R = A_w/k_{sd} } and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_w } is semi-orbital excursion Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_w = U_w T / (2 \pi) } .

Soulsby-van Rijn

Soulsby (1997) proposed the following equation for the total load sediment transport rate under currents and waves \begin{equation} \tag{20}

 q_t = A_s U \biggl[ \biggl( U^2 + 0.018  \frac{U_{rms}^2}{C_d} \biggr)^{0.5} - U_{cr} \biggr]^{2.4}

\end{equation}

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U_{rms}} is the root-mean-squared wave orbital velocity, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle C_d} is the drag coefficient due to currents alone and the coefficient Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_{s} = A_{sb} + A_{ss} } . The coefficients and are related to the bed and suspended transport loads respectively and are given by \begin{equation} \tag{21} A_{sb} = \frac{ 0.005 h (d_{50}/h)^{1.2} }{ [(s-1)g d_{50} ]^{1.2} } \end{equation} \begin{equation} \tag{22} A_{s} = \frac{ 0.012 d_{50} D_{*}^{-0.6} }{ [(s-1)g d_{50} ]^{1.2} } \end{equation}

The current drag coefficient is calcualted as \begin{equation} \tag{23} C_d = \biggl[ \frac{0.4}{\ln{(h/z_0)}-1 } \biggr]^2 \end{equation}

with a constant bed roughness length set to 0.006 m.


Symbol Description Units
Bed load transport rate m3/s
Relative density -
Shields parameter due to currents -
Shields parameter due to waves and currents -
Critical shields parameter -
Empirical coefficient -
Empirical coefficient -
Current magnitude m/s

References

  • Camenen, B., and Larson, M. (2005). "A bed load sediment transport formula for the nearshore," Estuarine, Coastal and Shelf Science, 63, 249-260.
  • Camenen, B., and Larson, M. (2007). "A unified sediment transport formulation for coastal inlet applications", ERDC/CHL-TR-06-7, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
  • Camenen, B., and Larson, M., (2008). "A General Formula for Non-Cohesive Suspended Sediment Transport," Journal of Coastal Research, 24(3), 615-627.
  • Soulsby, D.H. (1997). "Dynamics of marine sands. A manual for practical applications," Thomas Telford Publications, London, England, 249 p.
  • van Rijn, L. C. (1984a). "Sediment transport. Part I: Bed load transport", Journal of Hydraulic Engineering, 110(10), 1431–1456.
  • van Rijn, L. C. (1984b). "Sediment transport. Part II: Suspended loadtransport", Journal of Hydraulic Engineering, 110(11), 1613–1641.
  • van Rijn, L.C., (2007a). "Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport", Journal of Hydraulic Engineering, 133(6), 649-667.
  • van Rijn, L.C., (2007b). "Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport", Journal of Hydraulic Engineering, 133(6), 668-689.
  • Watanabe, A. (1987). "3-dimensional numerical model of beach evolution," Proceedings Coastal Sediments '87, ASCE, 802-817.

Documentation Portal