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Abstract: In this study, five depth-averaged 2-D turbulence models for river flows, including the 
depth-averaged parabolic eddy viscosity model, modified mixing length model, standard k-ε 
turbulence model, non-equilibrium k-ε turbulence model and re-normalized group (RNG) k-ε 
turbulence model, are compared in the simulation of flows around a spur-dyke, in a sudden-
expanded flume and in two natural rivers. It is shown that in the two field cases where the 
channel geometries are simple, all five models can give generally good predictions for the main 
flow features. However, in the two laboratory cases where the channel geometries are complex, 
differences have been found among these models. The depth-averaged parabolic eddy viscosity 
model over-predicts the recirculation flows behind the spur-dyke and the flume expansion. The 
modified mixing length model gives better prediction than the depth-averaged parabolic model. 
The standard k-ε turbulence model predicts well for the recirculation flow in the sudden-
expended flume but under-predicts the length of recirculation zone behind the spur-dyke, while 
the non-equilibrium and RNG k-ε turbulence models provide good results for both laboratory 
cases.  
 
Keywords: Turbulence Model; Depth-Averaged Two-dimensional Model; River Flow; Zero-
Equation Turbulence Model; k-ε Turbulence Model. 
 
 

1. INTRODUCTION 
 

Many turbulence models based on Reynolds-averaged Navier-Stokes equations, such as 
zero-equation turbulence model, one-equation turbulence model, two-equation turbulence model 
and Reynolds stress/flux model, have been successfully applied to the simulation of turbulent 
flows in computational fluid dynamics (CFD). In recent years, the large eddy simulation and 
direct numerical simulation of turbulent flows have also been progressed remarkably. These 
turbulence modeling techniques have been gradually applied in the simulation of river flows. 
However, because the computational domain in natural rivers is very irregular and even 
movable, the simulation of turbulent flow in rivers is less developed and mostly stays in the level 
of two-equation turbulence models or simpler ones. For the depth-averaged simulation of river 
flows, one of the most often used two-equation turbulence models is Rastogi and Rodi’s (1978) 
depth-averaged standard k-ε turbulence model. In the present study, Chen and Kim’s (1987) non-
equilibrium k-ε turbulence model and Yahkot et al.’s (1992) RNG k-ε turbulence model, which 
are widely used in CFD, are extended to the depth-averaged 2-D simulation of river flows. These 
two k-ε turbulence models are compared with other three depth-averaged turbulence models: the 
depth-averaged parabolic eddy viscosity model, the modified mixing length model, and Rastogi 
and Rodi’s depth-averaged standard k-ε model.  
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2. GOVERNING EQUATIONS 
 

The depth-integrated continuity and momentum equations of turbulent flow in rivers are: 

 0)()(
=

∂
∂

+
∂

∂
+

∂
∂

y
hV

x
hU

t
h  (1) 

 ( ) ( ) ( )
ρ
τ

ρρ
bxxyxxs

y
hT

x
hT

x
zgh

y
hVU

x
hUU

t
hU

−
∂

∂
+

∂
∂

+
∂
∂

−=
∂

∂
+

∂
∂

+
∂

∂ )(1)(1  (2) 

 ( ) ( ) ( )
ρ
τ

ρρ
byyyyxs

y
hT

x
hT

y
zgh

y
hVV

x
hUV

t
hV

−
∂

∂
+

∂
∂

+
∂
∂

−=
∂

∂
+

∂
∂

+
∂

∂ )(1)(1  (3) 

where t is the time; x and y are the horizontal Cartesian coordinates; h is the flow depth; U and V 
are the depth-averaged flow velocities in x- and y-directions; zs is the water surface elevation;  g 
is the gravitational acceleration; ρ is the density of flow; Txx, Txy, Tyx and Tyy are the depth-
averaged turbulent stresses; τbx and τby are the bed shear stresses that are determined by 

22 VUUc fbx +=ρτ  and 22 VUVc fby +=ρτ , in which 3/12 hgnc f =  and n is the Manning’s 
roughness coefficient. 

It should be noted that Eqs. (2) and (3) do not include the dispersion terms that exist due to 
the vertical nonuniformity of flow velocity. Their effect is assumed to be negligible in this study, 
but the treatment of these terms has been studied by Flokstra (1977), Wu and Wang (2004) and 
others.   

The turbulent stresses are determined by Boussinesq’s assumption 
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where ν  is the kinematic viscosity of water; tν  is the eddy viscosity due to turbulence; k is the 
turbulence energy. The k in Eqs. (4a) and (4c) is dropped when the zero-equation turbulence 
models are considered.  
 
 

3. TURBULENCE MODELS FOR EDDY VISCOSITY 
 
3.1. Depth-Averaged Parabolic Eddy Viscosity Model 

 
Averaging the eddy viscosity, which approximately yields a parabolic profile, over the flow 

depth, one can obtain the depth-averaged parabolic model for the eddy viscosity: 
 hUtt ∗=αν  (5) 
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where  is the bed shear velocity, ∗U ( )[ ] 2/122
* VUcU f += ; and tα  is an empirical coefficient. 

Theoretically, tα  should be equal to 6κ , with κ being the van Karman’s constant. However, 
different values have been given to tα , which may be due to the anisotropic features of 
turbulence structures in horizontal and vertical directions.  It is commonly accepted that tα  is 
related to the ratio of channel width and flow depth, having values between  (Elder, 
1959; Fischer et al., 1979). 

0.1~3.0

 
3.2. Modified Mixing Length Model 

 
Eq. (5) is very simple. It is applicable in the region of main flow, but it does not account for 

the influence of the horizontal gradient of velocity. Significant errors may exist when it is 
applied in the region close to rigid walls. Improvement can be achieved through the combination 
of Eq. (5) and Prandtl’s mixing length theory, which reads: 

 ( ) ( )222
0 SlhU ht += ∗αν  (6) 

where ( ) ( ) ( )[ ] 2/1222 22 xVyUyVxUS ∂∂+∂∂+∂∂+∂∂= 0; α  is an empirical coefficient, set as 

6κ ;  is the horizontal mixing length, and is determined by hl ( yhcl mh ,min )κ= , with y being 
the distance to the nearest wall, and  being an empirical coefficient.  mc
 
3.3. Standard k-ε Turbulence Model 

 
Rastogi and Rodi (1978) established the depth-averaged k-ε turbulence model through 

depth-integrating the 3-D standard k-ε model. The eddy viscosity ν t  is calculated by 
 εν μ

2kct =  (7) 
where cμ is an empirical constant. The turbulence energy k and its dissipation rate ε are 
determined with the following model transport equations: 
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SP th ν= ; hUcP fk
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−
Γ= μεεεν ; , , , 1εc 2εc Γεc kσ  and εσ  are 

empirical coefficients. The standard values of these coefficients are: , 09.0=μc 44.11 =εc , 
, 92.12 =εc 0.1=kσ , 3.1=εσ , and 6.38.1 −=Γεc .  

 
3.4. Non-equilibrium k-ε Turbulence Model 

 
Chen and Kim (1987) modified the standard k-ε turbulence model to consider the non-

equilibrium between the generation and dissipation of turbulence. A second time scale of the 
production range of turbulence kinetic energy spectrum is added to the dissipation rate equation, 
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which results in a functional form of coefficient  as 1εc εε hPc 25.015.11 += . The other 
parameters are , , 09.0=μc 90.12 =εc 8927.0=kσ , and 15.1=εσ . The modified model was 
called the non-equilibrium k-ε turbulence model (Shyy et al., 1997), which has been tested in a 
compressible recirculating flow with improved performance over the standard model. By using 
Rastogi and Rodi’s (1978) depth-averaging approach, the depth-averaged non-equilibrium k-ε 
model can be derived from the 3-D version. The formulations of k- and ε-equations are still the 
same as Eqs. (8) and (9), with only the model coefficients being replaced accordingly.  
 
3.5. RNG k-ε Turbulence Model 

 
Yakhot et al. (1992) re-derived the ε-equation (9) using the re-normalized group (RNG) 

theory. One new term was introduced to take into account the highly anisotropic features, usually 
associated with regions of large shear, and to modify the viscosity accordingly. This term was 
claimed to improve the simulation accuracy of the RNG k-ε turbulence model for highly strained 
flow. In analogy to the above non-equilibrium turbulence model, the depth-averaged 2-D RNG 
k-ε turbulence model can also be derived, whose k- and ε-equations are the same as Eqs. (8) and 
(9), with the new term being included in the coefficient  as 1εc ( ) ( )3

01 1142.1 βηηηηε +−−=c . 

Here, 015.0=β , εη kS= , and 38.40 =η . The other coefficients are , 085.0=μc 68.12 =εc , 

7179.0=kσ , and 7179.0=εσ . 
 
 

4. BOUNDARY CONDITIONS 
 

Near rigid wall boundaries, such as banks and islands, the wall-function approach is 
employed. By applying the log-law of velocity, the resultant wall shear stress wτ

r  is related to the 

flow velocity PV
r

 at the center P of the control volume close to the wall by the following relation:  
 Pw V

rr λτ −=  (10) 
where λ is a coefficient. In the k-ε turbulence models, λ is determined by ( )+= PP Eykc ln2/14/1 κρλ μ , 

which is valid in the range of . Here, 3006.11 << +
Py μρ μ PPP ykcy 2/14/1=+ . It should be noted that 

in the derivation of λ, the relation  is used, which can be obtained with the 
assumption of local equilibrium of turbulence (see Rodi, 1993). In the zero-equation turbulence 
models, the turbulence energy k is not solved, and hence λ is determined by 

2/14/1
Pkcu μ=∗

( )+∗= PEyu lnκρλ  
with μρ PP yuy ∗

+ =  instead. 
In three k-ε turbulence models, the turbulence generation Ph and the dissipation rate near the 

wall are determined by += PwPh yP κμτ 2
,  and PPP ykc κε μ

2/34/3= . 
In the simulation of the flow in an open channel with sloped banks, sand bars and islands, 

the computational domain may be partly wet or dry due to the water surface change. In the 
present model, a threshold flow depth (a small value such as 0.02m in natural rivers) is used to 
judge drying and wetting. If the flow depth in a node is larger than the threshold value, this node 
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is considered to be wet, and if the flow depth is lower than the threshold value, this node is dry. 
The above wall-function approach is applied in the water edge between the wet and dry nodes. 
 
 

5. NUMERICAL METHODS 
 

The above turbulence models are implemented in the depth-averaged 2-D model for shallow 
water flow in open channels developed by Wu (2004) on the basis of the general 2-D flow model 
of Zhu (1992). The governing equations are discretized using the finite volume method on a 
curvilinear, non-staggered grid. The convection terms are discretized by the HLPA scheme (Zhu, 
1991). The diffusion terms are discretized by the central difference scheme. The pressure and 
velocity coupling is achieved by using SIMPLEC algorithm with Rhie and Chow’s (1983) 
momentum interpolation technique. The resulting algebraic equations are solved by Stone’s 
(1968) strongly implicit procedure (SIP). The details of numerical methods can be found in Wu 
(2004). 
 
 

6. SIMULATION RESULTS 
 
Case 1: Flow around a Spur-Dyke 

 
Rajaratnam and Nwachukwu (1983) measured the flow around a spur-dyke. The 

experiments were conducted in a straight tilting rectangular flume, 37 m long, 0.92 m wide and 
0.76 m deep. The experimental run A1 is simulated here. The flume bed and walls were smooth, 
and the spur-dyke used in this case was an aluminum plate with a thickness of 3 mm and a 
projection length of 0.152 m.  The flow discharge was 0.0453 m3/s, and the approach flow depth 
was 0.189 m. The computational mesh consists of 103×32 nodes in longitudinal and transverse 
directions, part of which around the spur-dyke is shown in Fig. 1.  

Fig. 2 shows the flow patterns calculated by using these five turbulence models, and Fig. 3 
shows the comparison of the measured and calculated flow velocities in cross sections located at 
x/b=2, 4, 6 and 8. Here, b is the length of the spur-dyke. The coefficient tα  in the depth-averaged 
parabolic model is given as 1.0.  is used in the modified mixing length model. 4.0=mc 6.3=Γεc  
is used for all three k-ε turbulence models. All five turbulence models reasonably predict the 
main flow around the spur-dyke. However, the recirculation flows simulated by the five models 
do have significant differences. The depth-averaged parabolic model over-predicts the strength 
of the backward flow near the wall around the cross section of x/b=6. The modified mixing 
length model provides a better prediction for the velocity than the depth-averaged parabolic 
model. The standard k-ε turbulence model under-predicts the length of the recirculation zone. 
The results of the non-equilibrium and RANG k-ε turbulence models are very close to each 
other, and better than the results from the standard k-ε model.  

Fig. 4 shows the contours of eddy viscosities calculated by five turbulence models. The 
patterns of the viscosity contours from three k-ε turbulence models are very similar. The eddy 
viscosity calculated by the non-equilibrium and RNG k-ε turbulence models are very close to 
each other, but the eddy viscosity by the standard k-ε turbulence model is larger. The eddy 
viscosity by the depth-averaged parabolic model has larger values in the main flow than those 

 5



calculated by the other four models, while the modified mixing length model gives very large 
eddy viscosity around the tip of the spur-dyke. 
 
Case 2: Flow in a Sudden-Expanded Flume 

 
The flow in a sudden-expanded flume was measured by Xie (1996) and her colleagues. The 

experiment was conducted in a cement-coated flume, with a length of 18m, a width of 1.2m and 
a slope of 1/1000. Half of the flume width in the upper part was blocked, forming an expansion 
of the flume width from 0.6m to 1.2m at the location of 7.7m from the entrance.  The flow 
discharges were 0.01815 m3/s and 0.03854 m3/s in two experimental runs. The computational 
mesh has 121×36 nodes, part of which around the expansion is shown in Fig. 5. Figs. 6 and 7 
show the comparisons of the measured and calculated depth-averaged velocity profiles along six 
cross sections in two experimental runs. The non-equilibrium and RNG k-ε models provide 
generally good results. They perform the same in this case and the previous spur-dyke case, with 
the same coefficients being used. The standard k-ε model also provides good predictions in this 
case. The depth-averaged parabolic model still over-predicts the strength of the backward flow in 
the recirculation zone. The modified mixing length model gives better prediction than the depth-
averaged parabolic model, after its empirical coefficient  is adjusted to 1.1.  mc

 
Case 3: Flow in the Fall River 

 
The Fall River is located in Rocky Mountain National Park, Colorado. The study reach was 

about 100 m long, consisting of two opposite bends. The radius of curvature of the first and 
second bends was 11.0 m and 13.5 m, respectively. The channel width at bankfull stage was 
about 9 m (Thorne et al., 1985). The river was covered with coarse sand. The flow discharge was 
4 m3/s, which was at bankfull stage. The water surface level at the outlet was 2.61 m. Fig. 8 
shows the river planform and the computational mesh.  

In this case, the coefficient tα  in the depth-averaged parabolic model is given as 0.6.  in 
the modified mixing length model is specified as 1.2. The  in three k-ε turbulence models is 
set as 1.8. Fig. 9 shows the flow pattern calculated by using the standard k-ε turbulence model. 
The main flow is specified along the left bank in the entrance, and it does not change in the first 
bend and in the transitional stretch, but it turns to the right bank (outer bank) in the second bend 
just at about the bend apex. Two recirculation zones are produced. A very small one is in the 
transitional stretch, and a bigger one locates behind the apex along the inner bank of the second 
bend. The flow patterns calculated by using other four turbulence models are similar to that 
shown in Fig. 9. All five turbulence models capture the major features of the flow. 

mc

Γεc

Fig. 10 shows the comparison of the eddy viscosities along the cross section CS-5A 
calculated by the five turbulence models.  The eddy viscosities calculated by the three k-ε models 
are very close to each other, but significant differences are found among the k-ε models and the 
zero-equation turbulence models. Fig. 11 shows the comparison of the measured and calculated 
flow velocities in six cross sections. Because the convection is dominant in this case, even 
though the eddy viscosities calculated by the five turbulence models are obviously different, the 
velocities predicted by using the five models are close to each other. All the simulated velocities 
agree reasonably well with the measured values.  
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It should be noted that a relatively coarse mesh is used in the simulation. This is due to the 
consideration that the flow in a natural river is simulated. In order to investigate the influence of 
mesh size, a refined mesh is also used. This refined mesh is obtained from the coarse mesh by 
adding one node between each two nodes in longitudinal and transverse directions. However, the 
flow patterns and velocities calculated using these two meshes do not have significant difference. 
 
Case 4. Flow in the Dommel River 

 
The study reach in the Dommel River in the Netherlands is 285m long, containing two 

opposite bends of almost 90o, with a short straight reach in between and long straight reaches 
upstream and downstream. The channel width is almost constant, approximately 8m at bankfull 
stage. Fig. 12 shows the computational mesh consisting of 151×26 nodes. The flow discharge is 
1.4 m3/s, and the water elevation at the outlet is 26.55m. The flow was measured by de Vriend 
and Geldof (1983).  

Fig. 13 shows the flow pattern through the two bends calculated by the standard k-ε 
turbulence model. The flow occurs in the central part while the blank parts along two banks are 
dry zones. Other four models give very similar results.  Fig. 14 shows the comparison of the 
measured and calculated depth-averaged velocities in six cross sections whose locations are 
shown in Fig. 12. The coefficients of the five models in this case are the same as those used in 
the case of the Fall River, as presented in Table 1. Again, the velocities predicted by the five 
models are very close to each other, with reasonable agreement with the measured data. 
 
 

7. CONCLUSIONS 
 

Two zero-equation turbulence models and three k-ε turbulence models for depth-averaged 2-
D river flows have been compared in this study. The two zero-equation turbulence models are 
the depth-averaged parabolic eddy viscosity model and the modified mixing length model. The 
three k-ε turbulence models are the Rastogi and Rodi’s (1978) depth-averaged 2-D standard k-ε 
turbulence model as well as the depth-averaged 2-D non-equilibrium and RNG k-ε turbulence 
models derived from Chen and Kim’s (1987) and Yakhot et al.’s (1992) 3-D turbulence models 
following Rastogi and Rodi’s depth-averaging approach.  

The comparison in two natural rivers with simple channel geometry shows that the flow 
velocity distributions predicted by the five turbulence models are very similar. However, the 
simulated secondary flow features around a spur-dyke and in a sudden-expanded flume 
calculated by the five turbulence models are found to be obviously different. The depth-averaged 
parabolic eddy viscosity model over-predicts the strength of the backward flow in the 
recirculation zone, while the modified mixing length model gives reasonable prediction if its 
coefficient is adjusted. The standard k-ε turbulence model under-predicts the length of 
recirculation zone behind the spur-dyke but provides good prediction in the case pf sudden-
expanded flume. The non-equilibrium and RNG k-ε turbulence models provide better results for 
the flow with high shear strain than the standard k-ε turbulence model. 
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Table 1.  Summary of Model Coefficients used in Test Cases 
 

Test Cases 
Depth-Av. 
Parabolic 

Model 

Modified Mixing 
Length Model 

Standard 
k-ε 

Model 

Non-
equilibrium 
k-ε Model 

RNG 
k-ε 

Model 
Spur-Dike αt=1.0 cm=0.4 cεΓ=3.6 cεΓ=3.6 cεΓ=3.6 

Sudden-Expansion αt=1.0 cm=1.1 cεΓ=3.6 cεΓ=3.6 cεΓ=3.6 
Fall River αt=0.6 cm=1.2 cεΓ=1.8 cεΓ=1.8 cεΓ=1.8 

Dommel River αt=0.6 cm=1.2 cεΓ=1.8 cεΓ=1.8 cεΓ=1.8 
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Fig. 3  Measured vs. Calculated Flow Velocities around a Spur-Dyke 
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Fig. 4  Calculated Viscosities around a Spur-Dyke 
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Fig. 5  Computational Mesh in the Sudden-Expanded Flume 
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Fig. 6  Measured vs. Calculated Velocities in the Sudden-Expanded Flume 
(Q=0.01815 m3/s) 
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Fig. 7  Measured vs. Calculated Velocities in the Sudden-Expanded Flume 
(Q=0.03854 m3/s) 
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Fig. 8  Computational Mesh (Coarse) in the Study Reach of the Fall River 
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Fig. 9  Flow Field in the Fall River Calculated by using Standard k-ε Model 
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Fig. 10  Calculated Eddy Viscosities in CS-5A 
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Fig. 11  Measured vs. Calculated Velocity in the Fall River 
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Fig. 12  Sketch of the Study Reach of the Dommel River 
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Fig. 13  Calculated Flow Field in part of the Dommel River  
(Standard k-ε Model) 
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Fig. 14  Measured vs. Calculated Velocities in the Dommel River 
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