CMS-Wave Demonstrations to Louisiana (Levees & Muddy coast)

Lihwa Lin, ERDC CHL

Lihwa.Lin@usace.army.mil

No. 1 of 28 Slides

- 1. Definitions of wave run-up & setup
- 2. Wave run-up formulas
- 3. Advantages of CMS-Wave run-up
- 4. Ahrens & Titus experiments (1981)
- 5. Mase & Iwagaki experiments (1984)
- 6. Examples run-up & overtopping
- 7. Idealized single-breakwater
- Goda wave transmission experiments (2000)
- 9. Hughes wave-overtopping levee experiments (2008)
- 10. Muddy coast comparisons

1. Definition of Wave Run-up & Setup

Definitions:

- Wave Run-up: maximum vertical extent of wave uprush on a beach or structure above the still-water level (SWL)
- Wave Setup: rise of mean water level above the SWL caused by wave breaking on a beach or structure

2. Wave Run-up Formulas

- Computationally efficient users can specify structures and areas for wave run-up calculations
- Essential for calculation of coast erosion, barrier island breaching, wave overtopping, and coastal flooding during storms
- CMS-Wave calculates wave run-up and setup to determine the maximum water level (surge + tide + wave runup + wave setup)
- Can be coupled with CMS-Flow

- 275 Laboratory experiments (in 1.2 m x 4.6 m wave tank)
- Irregular wave run-up on plane, smooth slopes
- 6 different slopes: 1:1 (steep), 2:3, 1:2, 2:5, 1:3, and 1:4 (moderate)
- 8 different water levels: 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8 m
- A wide range of incident spectra (varying spectral width)

• Incident wave parameters: *Hs*, *Tp*, *Qp* (wave group parameter)

$$Qp = \frac{2\int f S^{2}(f)df}{(\int S(f)df)^{2}}, \quad (Goda, 1970)$$

• Wave run-up data: *R2* (total run-up by 2% exceedance) and *RM* (average elevation of total run-ups)

No. 8 of 28 Slides

$$Qp^* = \frac{(\gamma - 3)}{2} + 3$$
 or $\gamma = 2 (Qp^* - 3) + 3 (\gamma \ge 1)$

ONSWAP spectrum (Hasselmann et al., 1973)

$$S(f) = \frac{\alpha g^2}{(2\pi)^4 f^5} \exp\left[-1.25 \left(\frac{f_p}{f}\right)^4\right] \gamma^q$$

with $q = \exp\left(-\frac{(f-f_p)^2}{2\sigma^2 f_p^2}\right)$ and $\sigma = \begin{cases} 0.07 & f \le f_p\\ 0.09 & f > f_p \end{cases}$

Pierson-Moskowitz and JONSWAP frequency spectra.

Relationship between Qp & JONSWAP γ Examples 1 & 2

Prototype scale

Relationship between Qp & JONSWAP γ Examples 3 & 4

CIRP

No. 12 of 28 Slides

5. Mase and Iwagaki Experiments (1984)

- 120 Laboratory experiments (in 0.5 m x 27 m wave tank)
- Irregular wave run-up on plane, smooth slopes
- 4 different slopes: 1:5 (moderate), 1:10, 1:20, and 1:30 (mild)
- 2 water levels (flat bottom section): 0.45 m for 1/5, 1/10 and 1/20 slope; 0.43 m for 1/30 slope
- Incident spectra (varying wave energy): Pierson-Moskowitz type

Slope	Correlation Coefficient
1:1	0.74
2:3	0.86
1:2	0.90
2:5	0.88
1:3	0.79
1:4	0.72
1:5 - 1:30	0.91

6. Example CMS-Wave Run-up & Overtopping

Run-up

Overtopping

1,000 m

7. Example Idealized Single-Breakwater CMS Grid

Breakwater length = 50 m, width = 5 m, elevation = 1 m MSL

CIRP

Calc. Wave Fields after 10-day Simulation Incident Wave: 1-m, 8-sec, 0-deg

NO wave run-up NO wave overtopping Wave run-up Wave overtopping CIRP

Calc. Morphology: 30-day Animation with Wave Diffraction & Overtopping

No. 18 of 28 Slides

8. Goda Wave Transmission Experiments (2000)

Transmission coefficients k_t $H_i = 1 \text{ m}, Tp = 6 \text{ sec (monochromatic wave)}$ h = 10 m, d = 5 m, B = 80 m							
h_{c} (m)	CMS-Wa	ave	Equations				
	Vertical wall •	Rubble mound	Vertical wall	Rubble mound			
-2.0	1.02	1.02					
-1.5	1.03	1.03					
-1.0	0.78	0.78					
-0.5	0.63	0.63					
0.0	0.46	0.34	0.45	0.33			
0.5	0.27	0.18	0.30	0.18			
1.0	0.15	0.04	0.15	0.03			
1.5	0.10	0.024					
2.0	0.07	0.018					

Coastal Inlets Research Program

No. 19 of 28 Slides

Experiment number

9. Hughes Wave-Overtopping Levee **Experiments (2008)**

Prototype-scale

Average overtopping discharge

Experiment number

Average overtopping discharg

27 experiments: Prototype-tomodel length scale = 25:1

Design condition: 3 surge elevations (0.29, 0.81, 1.3 m above levee crest)

3 sig. wave heights (0.9, 1.8, 2.7 m)

3 peak wave periods (6, 10, 14 sec)

				-					-					
	H _{m0}	<u><i>T</i></u> _p	qs	qws_ave	I	<i>H</i> _{m0}	<u>тр</u>	<i>q</i> ₅	qws_ave	I	<i>H</i> _{m0}	<u>тр</u>	qs	q _{ws_ave}
	(m)	(s)	(m ³ /	s/m)		(m)	(s)	(m ³ /	s/m)		(m)	(s)	(m	1 ³ /s/m)
Surge level = +	+ 0.29 m above le	vee crown			Surge level = -	0.81 m above le	vee crown			Surge level = + 1	1.3 m above leve	e crown		
R128	0.82	6.07	0.266	0.378	R110	0.77	5.69	1.155	1.181	R119	0.64	6.07	2.453	2.576
R129	1.67	5.94	0.308	0.492	R111	1.46	5.94	1.213	1.098	R120	1.17	6.07	2.525	2.657
R130	2.54	5.94	0.287	0.520	R112	2.40	5.94	1.180	1.061	R121	2.30	6.07	2.546	2.670
R104	1.00	10.51	0.259	0.297	R113	0.88	10.12	1.125	1.094	R122	0.86	10.12	2.629	2.621
R105	1.89	10.51	0.241	0.492	R132	1.91	10.12	1.601	1.620	R123	1.79	10.12	2.529	2.770
R131	2.83	10.51	0.240	0.728	R115	2.66	10.51	1.248	1.432	R124	2.74	10.12	2.587	2.758
R107	0.79	13.66	0.247	0.351	R116	0.75	14.37	1.173	1.250	R125	0.74	14.37	2.417	2.585
R108	1.68	13.66	0.259	0.551	R117	1.63	14.37	1.250	1.450	R126	1.50	14.37	2.475	2.734
R109	2.48	13.66	0.261	0.696	R118	2.42	14.37	1.237	1.508	R127	2.31	14.37	2.538	2.839
oastal In	lets Res	earch	Program		÷			No.	20 of	28 Slides				ERDC (

Coastal and Hydraulics Laboratory

Model domain: 50 m x 1000 m (10 x 152 cells); a constant 5-m spacing along y axis & variable 0.5 - 20-m spacing along x axis

Simulation duration = 5 hrs, Wave input interval= 0.5 hr, Hydro time step = 0.05 sec CMS-Wave bottom friction $c_f = 0.005$ CMS-Flow Manning's n = 0.05 for levee and n = 0.025 elsewhere

Measured & Calculated Overtopping Rate

Case	Surge	Wave	Wave peak	Overtopping rate (m ² /sec)				
number			penou (sec)	Measured	CMS-Flow	CMS-Wave		
R128	0.29			0.27	0.28			
	0.29	0.82	6.1	0.38	0.38	0.39		
R109	0.29			0.26	0.28			
	0.29	2.48	13.7	0.70	0.85	0.92		
R121	1.3			2.55	2.57			
	1.3	2.30	6.1	2.67	2.93	2.76		
R127	1.3			2.54	2.57			
	1.3	2.31	14.4	2.84	2.98	2.81		

R113: Surge level = 0.81 m (3 ft) H_s = 0.88 m, T_p = 10.1 sec

10. Louisiana Coast Wave Simulation

Associated with a cold front З CSI 3 (2001)H (m CSI 5 01/0901/1401/1901/2401/2902/03 02/08 02/1302/1802/2302/28

Wave-Current Information System Coastal Studies Institute (CSI) Louisiana State University (Image by Earth Scan Laboratory, CSI)

CSI 3 – fine silt cohesive sediment CSI 5 – fine quartz sand

Refs:

Sheremet, A. and Stone, G.W. 2003. Wave dissipation due to heterogeneous sediments on the inner Louisiana shelf. Proceedings. Of Coastal Sediments'03, Clearwater Beach, FL.

Sheremet, A, Meta, A.J., Liu, B. and Stone, G.W. 2005. Wave-Current interaction on a muddy inner shelf during Hurricane Claudette. Estuarine, Coastal and Shelf Science 63.

CMS-Wave Louisiana Coast Simulation

Depth, m (MSL)

Model domain: 180 m x 330 km (500 x 1000 cells)

largest cell ~ 2.5 km x 2.5 km smallest cell ~ 200 m x 200 m

$$S_{dp} = -4(\nu_k + \nu_t)k^2E$$

where

$$v_t = v_{t, breaking} \frac{H_s}{h}$$

 $V_{t,breaking} = 0.04 \text{ m}^2/\text{sec}$

 $V_k \sim 0$

CMS-Wave Grid

No. 27 of 28 Slides

- Lin, L., Z. Demirbilek, H. Mase, J. Zheng., and F. Yamada. 2008 "CMS-Wave: A Nearshore Spectral Wave Processes Model for Coastal Inlets and Navigation Projects," ERDC/CHL TR-08-13.
- 2. Hughes, S. 2003 "Estimating Irregular Wave Run-up on Smooth, Impermeable Slopes," ERDC/CHL CHETN-III-68.
- 3. Headquarters, U.S. Army Corps of Engineers. 2003 Coastal Engineering Manual, EM-1110-1100, Washington, DC.

Lihwa.Lin@usace.army.mil