
US Army Corps of Engineers® Engineer Research and Development Center

Coastal Modeling System, Report 5: CMS-Flow Theory, Numerical Implementation and User Guide

Alejandro Sánchez, Weiming Wu, Julie Rosati, Zeki Demirbilek, DRAFT April 2012 Tanya Beck, Honghai Li, and Mitch Brown

Coastal Modeling System, Report 5: CMS-Flow Theory, Numerical Implementation, and User

Alejandro Sánchez, Weiming Wu, Julie Rosati, Zeki Demirbilek, Tanya Beck, Honghai Li, and Mitch Brown

Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road, Vicksburg, MS 39180-6199

Draft report

Abstract: This is the fifth report, Report 5, in a series of reports on the documentation of the Coastal Modeling System (CMS). The first 4 reports cover the Verification and Validation (V&V) of the Coastal Modeling System (CMS). This report contains details of the theory and numerical implementation of hydrodynamics and sediment transport model (CMS-Flow). The report also includes major findings and default parameters as guidance to users for practical applications of CMS.

Contents

011	it Conversion Factors	
1	Introduction	
2	Mathematical Formulations	4
	Hydrodynamics	
	Continuity and Momentum	
	Wave Flux Velocity	
	Mean Wave-Current Bottom Friction	7
	Wave Radiation Stresses	
	Wind Surface Stress	
	Eddy Viscosity	
	Boundary Conditions	
	Salinity Transport	Error! Bookmark not defined.
	Transport Equation	Error! Bookmark not defined.
	Boundary Conditions	Error! Bookmark not defined.
	Sediment Transport	
	Nonequilibrium Total-Load Transport Model	
	Equilibrium Transport Formulas	
	Soulsby-van Rijn Total-load Transport Formula	
	Hiding and Exposure	
	Horizontal Sediment Mixing Coefficient	
	Boundary Conditions	
	Surface Roller	
3	Numerical Methods	42
	Overview	
	CMS-Flow Computational Grid	
	General Transport Equation	
	Spatial Discretization	
	Temporal Discretization	
	Cell-face interpolation operator	
	Advection Schemes	
	Cell-face gradient operator	
	Cell-centered gradient operator	
	Source/sink term	
	Assembly of Algebraic Equations	
	Implicit Relaxation	
	Iterative Solvers	
	Convergence and Time Stepping	
	Ramp Period	
	Hydrodynamics	

	Solution Procedure	
	Cell-face Velocity	
	Wetting and Drying	54
	Sediment Transport	
	Transport Equations	
	Mixing Layer	
	Bed Material Sorting	
	Avalanching	57
	Hard bottom	
	Semi-Coupling Procedure	
	Surface Roller	
	Coupling Procedure of CMS-Flow and CMS-Wave	60
	Spatial Interpolation and Extrapolation	62
	Water levels	62
	Current Velocities	
	Bed elevations	63
	Significant Wave height	
	Wave Period	63
	Wave Direction	64
	Temporal Interpolation and Extrapolation	64
-		
4	User Guide	
	Overview	
	Limitations and Recommendations	
	Cartesian Grids	
	CMS-Flow Grid Files	
	Horizontal Coordinate System and Conventions	
	Vertical Coordinate System and Conventions	74
	Vertical Coordinate System and Conventions CMS-Flow Model Setup	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport	74 76 77 79 82 84 84 87 95 95 95 100 101
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport Example Application in SMS Interface Sediment Transport and Morphologic Time steps	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport Example Application in SMS Interface Sediment Transport	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport Example Application in SMS Interface Sediment Transport and Morphologic Time steps	74 76 77 79 82 84 84 87 95 95 100 101 101 109 110 110
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport Example Application in SMS Interface Sediment Transport and Morphologic Time steps Sediment Characteristics	
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport Example Application in SMS Interface Sediment Transport and Morphologic Time steps Sediment Characteristics Transport model	74 76 77 79 82 82 84 87 95 95 95 100 101 101 109 110 110 111 111
	Vertical Coordinate System and Conventions CMS-Flow Model Setup Flow Options and Parameters Bottom Friction Wall Friction Eddy Viscosity CMS-Flow Wind and Atmospheric Pressure Forcing CMS-Flow Boundary Conditions Assigning Boundary Conditions Salinity Transport Example Application in SMS Interface Sediment Transport and Morphologic Time steps Sediment Transport and Morphologic Time steps Sediment Characteristics Transport model Sediment Transport Formula	74 76 77 79 82 84 84 87 95 95 100 101 101 101 101 110 110 110 111 111

	XMDF Solution Files (Binary Format)	230
9	Appendix B: Description of Output Files	
	XMDF CMS-Flow Model Parameters File (*_mp.h5)	
	XMDF CMS-Flow Grid File (*_grid.h5)	
	Telescoping Grid File (*.tel)	
	CMS-Flow	
8	Appendix A: Description of Input Files	
7	References	
6	List of Symbols	
5	Summary	
_		
	Morphology	
	Sediment Transport	
	Water Levels & Currents	
	Viewing and Post-Processing Results	
	Standalone Program	
	SMS Steering Module SMS CMS-Flow Menu	
	Running the CMS	
	Coupling of CMS-Flow and CMS-Wave	
	ASCII Output Files	
	Simulation Statistics	
	Observation Cells (Save Points)	
	XMDF File Compression	
	Advanced Global Output	
	Output Group File Specification	
	Global Output	
	CMS-Flow Output	
	Initial Conditions File	
	Hot Start File	
	Hot Start	
	Parallelization	
	Wetting and Drying	
	Advection Schemes	
	Matrix Solver Options	
	Temporal Solution Scheme	
	CMS-Flow Numerical Methods	
	Multiple-sized Sediment Transport	
	Single-sized Sediment Transport	
	Total Load Correction Factor	
	Avalanching Ramp Period	
	Bed slope Term	124

SMS Super Files (ASCII Format)	232
Time Series (Observation Point) Files	232

Figures and Tables

Figures

Figure 1-1. CMS framework and its components.	1
Figure 2-1. Vertical conventions used for mean water surface elevation and bed elevations.	6
Figure 2-2. Schematic of sediment and current vertical profiles.	20
Figure 2-3. Suspend load correction factors based on the logarithmic velocity profile and exponential (a) and Rouse (b) suspended sediment profile	21
Figure 2-4. Schematic of the multi-layer bed material sorting model.	23
Figure 2-5. Schematic showing an example bed layer evolution. Colors indicate layer number.	24
Figure 3-1. Examples of a Cartesian grids allowed in CMS: Stretched Cartesian (left) and telescoping grid (right)	43
Figure 3-2. Schematic showing two types of refined cells	46
Figure 3-3. Ramp function used in CMS.	52
Figure 3-4. Example bed layer evolution. Colors indicate layer number	57
Figure 3-5. CMS coupling process between CMS-Flow and CMS-Wave.	60
Figure 3-6. Schematic of steering process	61
Figure 4-1. Types of Cartesian grids supported by the SMS interface and CMS-Flow	68
Figure 4-2. CMS-Flow local coordinate system	73
Figure 4-3. Schematic of showing the difference between MSL (tidal) and geodetic datums.	74
Figure 4-4. CMS-Flow Model Control: Model Parameters tab for specifying time series output of CMS-Flow calculated datasets	76
Figure 4-5. Specification of the Bottom Friction Dataset via the Input tab of the CMS- Flow Model Control window in SMS 11.0	79
Figure 4-6. Initialization of the Manning's N Dataset in SMS 11.0	80

Figure 4-7. Three SMS Project Explorer showing the Manning's <i>n</i> , Bottom Friction Coefficient and Roughness Height datasets.	81
Figure 4-8. Wall friction specification in the SMS 11.0 CMS-Flow Model Control window.	83
Figure 4-9. Toggle for turning On and Off the mixing terms in the SMS 11.0 interface	84
Figure 4-10. CMS-Flow Wind/Wave tab in the CMS-Flow Model Control window	.87
Figure 4-11. Schematic of wind and currents in same (left) and opposing directions (right).	93
Figure 4-12. Selecting the cellstring along the ocean boundary, and clicking on Assign BC.	96
Figure 4-13. Top: is the blank XY Series Editor; Bottom: after the data is pasted in	.97
Figure 4-14. Setting the tidal database executable location in the SMS Preferences window.	99
Figure 4-15. CMS domain, quadtree grid, and bathymetry of Matagorda Bay, TX. Red dots are the survey stations and red arrows indicate freshwater inflow locations1	101
Figure 4-16. Files for the CMS-Flow salinity simulation1	L02
Figure 4-17. Setting up the salinity calculation and specifying spatially varied initial salinity	103
Figure 4-18. CMS-Flow data tree1	L04
Figure 4-19. Initial salinity distribution1	L05
Figure 4-20. Salinity boundary types in the CMS1	L06
Figure 4-21. Salinity specifications along the WSE-forcing boundary1	L06
Figure 4-22. Salinity boundary input from a xys file1	107
Figure 4-23. SMS 11.0 interfaces for sediment transport1	L09
Figure 4-24. CMS-Flow Model Control window showing the location where the hard bottom dataset is specified1	L21
Figure 4-25. SMS Project Explorer showing Hard bottom dataset1	L22
Figure 4-26 Sediment tab of the CMS-Flow Model Control window (SMS 11.0)1	L30
Figure 4-27. SMS project explorer showing Custom Datasets for D16 and D841	L34
Figure 4-28. SMS project explorer showing Custom Datasets for D16 and D841	L34
Figure 4-29. SMS project explorer showing Custom Datasets for D16 and D841	L34

Figure 4-30. Structure of the Custom Input Datasets file shown in HDFView	135
Figure 4-31. SMS project explorer showing Custom Datasets for D16 and D84	136
Figure 4-32. It is not possible to edit user defined datasets unless they are the Depth, D50, ManningN, Hardbottom, or a Custom Dataset	137
Figure 4-33. Mapping of D16 dataset as the <i>Elevation</i> dataset	137
Figure 4-34. Elevation dataset selection	137
Figure 4-35. SMS window showing D16 dataset mapped as the <i>Elevation</i> dataset	138
Figure 4-36. Exporting the D16 and D84 datasets	138
Figure 4-37. HDFView showing the structure of the CMS Hot Start File	147
Figure 4-38. Dataset Toolbox showing a time step sample of the water elevation and current velocity datasets for use in a hot start (initial condition) file	149
Figure 4-39. Dataset Toolbox showing a time step sample of the water elevation and current velocity datasets for use in a hot start (initial condition) file	149
Figure 4-40. Output tab in SMS 11.0	151
Figure 4-41. Cells tab in SMS 11.0	155
Figure 4-42. CMS-Flow Control (card) File viewed in TextPad	162
Figure 4-43. Changing the CMS-Flow model executable	163
Figure 4-44. Setting the CMS steering information.	163
Figure 4-45. Changing the CMS-Flow model executable	165
Figure 4-46. Example of launching the CMS from the CMS-Flow menu	166
Figure 4-47. Example of launching the inline CMS-Flow steering run	168
Figure 4-48. Example of launching the inline CMS-Flow steering run.	168
Figure 4-49. Example of launching the inline CMS by double-clicking on the executable.	171
Figure 4-50. Northern portion of the Shark River estuary	173
Figure 4-51. Location of NOAA (red) and USGS (blue) water level gauges	173
Figure 4-52. Contour tab settings for color display and value range. Note the blue colors were selected for the visible range.	174
Figure 4-53. Water surface elevation color contours modified	175
Figure 4-54. Vector Display options set for a gridded display across the domain	176

Figure 4-55. Vectors and color contours set for displaying current magnitude (color) and direction (vectors). Note that the vectors are slightly scaled on this setting to reflect magnitude.	177
Figure 4-56. Observation point placed at the location of the Belmar tide station.	178
Figure 4-57. Input of time series water surface elevation data into an observation point	179
Figure 4-58. Plot Wizard for time series data (top); Time Series plot of Water Elevation (bottom)	180
Figure 4-60. Observed time series of water level at Sandy Hook and Belmar ("Bay") and calculated water level at Belmar.	182
Figure 4-61. Sampling time steps of the Water_Elevation scalar dataset in the Dataset Toolbox	183
Figure 4-62. Sampling time steps of the Water_Elevation scalar dataset in the Dataset Toolbox.	184
Figure 4-63. Example of the vector display along the measured transects. Note the vectors are scaled to the magnitude, and these scales can be manipulated in the Scatterset Vector tab.	185
Figure 4-64. Data calculator used to convert the vector magnitude from centimeters to meters for comparison to the calculated velocity magnitude.	185
Figure 4-65. Color options turned on for scatter points.	186
Figure 4-66. Example of a feature arc with arrows in the ebb direction. Redistribute Vertices, Reverse Arc, and other options are available in the drop down menu	187
Figure 4-67. Plot Wizard data options for displaying measured and calculated data from an observation arc	188
Figure 4-68. Plotted measured and calculated data from the larger observation arc to the East. Note that the positive direction reflects the observation arcs direction	189
Figure 4-69. Opening the CMS-Flow Cell Attributes window	190
Figure 4-70. CMS-Flow Cell Attributes window.	191
Figure 4-71. Opening the SMS Save As window.	192
Figure 4-72. SMS Save As window	193
Figure 4-73. Total-load Sediment transport rates for Shark River Inlet.	195
Figure 4-74. Data tree showing the sediment and hydrodynamic simulation statistics	196
Figure X. Example of the Net Total-load Sediment Transport Rate vectors and magnitudes for Shark River inlet after a short 24-hr simulation.	197

Figure . Creating a new Map Coverage of type Obesrvation	198
Figure . Setting the current Map Coverage to an Observational type	198
Figure 4-75. Example of a Feature Arc for calculating sediment transport	199
Figure 4-76. Highlighted Feature Arc with the positive direction shown by the arrows	200
Figure 4-77. Reversing the arc direction	200
Figure 4-78. Selecting the correct Start and End Times, Feature Arcs, and Scalar and Vector Datasets in Step 2 of 2 of the Plot Wizard	201
Figure 4-79. Example plot of an integrated net sediment transport rate across a feature arc.	202
Figure 4-80. Selecting View Values after left-clicking on the time series plot	202
Figure 4-81. Net sediment transport rate integrated across	203
Figure 4-82. Data Calculator Options in the Dataset Toolbox	204
Figure 4-83. Display of calculated bathymetry now converted to elevations. Note the legend has been modified to display the new contours	205
Figure 4-84. Observation Coverage attributes	206
Figure 4-85. Plot Wizard Step 2	207
Figure 4-86. Plotted cross-section	207
Figure 4-87. Data Export Options	208
Figure 4-88. Sampling time steps from a solution dataset	209
Figure 4-89. Converting a solution dataset to a scatter dataset	210
Figure 4-90. Mapping a scatterset contour to the map module	211
Figure 4-91. Mapped coverage of the 6-m contour at Months 1 and 6 (left and right, respectively).	212
Figure 4-92. Left: Two arcs drawn to connect the 6m contour back to a common point to close off the polygon. Right: Highlighted polygon after created	213
Figure 4-93. Options for selecting and deleting data from Mesh, Cartesian Grids, and Scattersets using polygons	214
Figure 4-94. Selected cells from a polygon. Volume information given in lower, right corner of screen.	215

Tables

Table 2-1. Tidal Constituents names and speeds in solar hours implemented in CMS.
Table 3-1. Default criteria for determining whether the iterative solution procedure has converged, diverged, or needs the time step reduced
Table 4-1. CMS-Flow cards related to the grid specification and options. 71
Table 4-2. CMS-Flow Cards associated with the Flow Tab. 77
Table 4-3. SMS Cards related to the bottom friction datasets 81
Table 4-4. Advanced Cards to set bottom friction dataset to a constant value
Table 4-5. Advanced Card used for specifying the wave-current mean stress formulation 82
Table 4-6. Advanced Card used for activating the bed slope friction factor 82
Table 4-7. SMS Cards related to the bottom friction datasets 83
Table 4-8. CMS card used to set turbulence model and eddy viscosity terms
Table 4-9. CMS cards used for spatially constant wind forcing. 87
Table 4-10. CMS-Flow cards related to winds and atmospheric pressure 89
Table 4-11. CMS-Flow cards used to specify the Oceanweather wind, atmospheric pressure and grid coordinates files
Table 4-12. CMS-Flow card for specifying the reference frame
Table 4-13. CMS-Flow cards related to winds and atmospheric pressure
Table 4-14. CMS-Flow cards related to winds and atmospheric pressure
Table 4-15. Tidal Constituents names and speeds in solar hours implemented in CMS
Table 4-16. Water salinity classification. 100
Table 4-17. CMS card used to turn On or Off the sediment transport
Table 4-18. CMS card used to set the sediment transport and morphologic time steps. 110
Table 4-19. CMS-Flow card used for setting the Schmidt number. 111
Table 4-20. CMS card used to specify the sediment transport model
Table 4-21. CMS-Flow cards used to specify the sediment transport formula and related parameters and options. 113
Table 4-22. CMS card used to specify the bed- and suspended-load scaling factors

Table 4-23. CMS card used to specify the morphologi acceleration factor	115
Table 4-24. CMS card used to turn On or Off the mixing terms in the momentum and transport equations	116
Table 4-25. CMS card used to specify the total-load adaptation coefficient.	117
Table 4-26. CMS card used to specify the bed-load adaptation coefficient	118
Table 4-27. CMS card used to specify the suspened-load adaptation coefficient	119
Table 4-28. CMS card used to turn On or Off the mixing terms in the momentum and transport equations	124
Table 4-29. CMS-Flow cards related to avalanching.	124
Table 4-30. CMS-Flow card used to turn On or Off bed updating during the ramp period	125
Table 4-31. CMS-Flow cards related to the total load correction factor.	125
Table 4-32. CMS card used for specifying the single-sized sediment transport hiding and exposure correction.	125
Table 4-33. CMS Flow cards related to the boundary conditions.	126
Table 4-34. CMS-Flow cards related to the grain size classes	128
Table 4-35. CMS-Flow card used to specify the option for specifying the bed material composition	129
Table 4-36. Sorting classification based on the geometric standard deviation (Folk and Ward, 1957)	131
Table 4-37. CMS-Flow cards related to the D50 dataset and standard deviation	131
Table 4-38. CMS-Flow cards related to the D16_D50_D84	132
Table 4-39. CMS-Flow cards related to the D35_D50_D90 option for specifying the bed material composition	139
Table 4-40. CMS-Flow cards related to the SIZE_CLASS_FRACTIONS option for specifying the bed material composition	140
Table 4-41. CMS-Flow cards related to the general parameters	140
Table 4-42. CMS-Flow used for setting a constant mixing layer thickness.	141
Table 4-43. CMS-Flow card used for setting the hiding and exposure coefficient	142
Table 4-44. CMS-Flow cards related to the surface roller	143
Table 4-45. CMS-Flow cards related to the matrix solver	144

Table 4-46. CMS-Flow cards related to numerical methods	144
Table 4-47. CMS-Flow cards related to wetting and drying	145
Table 4-48. CMS-Flow card used to specify the number of threads	145
Table 4-49. CMS-Flow cards used to specify the hot start output file	148
Table 4-50. Path and name for initial condition file variables.	148
Table 4-51. CMS-Flow card for specifying the initial condition file.	150
Table 4-52. CMS-Flow cards related to the output datasets.	152
Table 4-53. CMS-Flow cards used for specifying the time series and lists	
Table 4-54. Variable group output file name specification.	154
Table 4-55. Advanced output datasets	154
Table 4-56. CMS-Flow card for compressing the XMDF output file	155
Table 4-57. CMS-Flow card for compressing the XMDF output file	155
Table 4-58. CMS-Flow cards related to output statistics	156
Table 4-59. Hydrodynamic Statistics	157
Table 4-60. Sediment Statistics	157
Table 4-61. Sediment Statistics	158
Table 4-62. CMS-Flow cards used to output Tecplot and SMS Super ASCII files	158
Table 4-63. CMS-Flow cards related to steering	160
Table 4-64. Input Files for CMS-Flow	
Table A1. Description of column data in the CMS-Flow Telescoping Grid File.	

Unit Conversion Factors

Multiply	Ву	To Obtain
cubic yards	0.7645549	cubic meters
degrees (angle)	0.01745329	radians
feet	0.3048	meters
knots	0.5144444	meters per second
miles (nautical)	1,852	meters
miles (U.S. statute)	1,609.347	meters
miles per hour	0.44704	meters per second
pounds (force)	4.448222	newtons
pounds (force) per foot	14.59390	newtons per meter
pounds (force) per square foot	47.88026	pascals
square feet	0.09290304	square meters
square miles	2.589998 E+06	square meters
tons (force)	8,896.443	newtons
tons (force) per square foot	95.76052	kilopascals
yards	0.9144	meters

1 Introduction

The hills surrounding ancient kingdoms still remain, But waves beating on ruined walls silently roll away - Liu Yuxi (772-842)

The Coastal Modeling System (CMS) is an integrated numerical modeling system for simulating nearshore waves, currents, water levels, sediment transport, and morphology change (Militello et al. 2004; Buttolph et al. 2006; Lin et al. 2008; Reed et al. 2011). The system was developed and continues to be supported by the Coastal Inlets Research Program (CIRP), a research and development program of the U.S. Army Corps of Engineers (USACE) that is funded by the Operation and Maintenance Navigation Business Line of the USACE. CMS is designed for coastal inlets and navigation applications including channel performance and sediment exchange between inlets and adjacent beaches. Modeling provides planners and engineers essential information for reducing costs of USACE Operation and Maintenance activities. CIRP is developing, testing, improving and transferring the CMS to Corps Districts and industry and assisting users in engineering studies. The overall framework of the CMS and its components are presented in Figure 1-1.

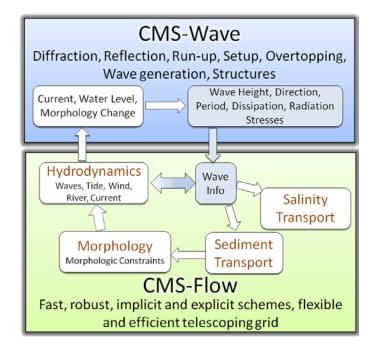


Figure 1-1. CMS framework and its components.

The CMS includes a flow model which calculates hydrodynamics and sediment transport (CMS-Flow) and a wave model (CMS-Wave), all coupled together within the Surface-water Modeling System (SMS). CMS-Flow is a two-dimensional (2-D) depth-averaged nearshore circulation model. CMS-Flow calculates currents and water levels including physical processes such as advection, turbulent mixing, combined wave-current bottom friction; wind, wave, river, and tidal forcing forcing; Coriolis force; and the influence of coastal structures (Buttolph et al. 2006a; Wu et al. 2011). The implicit solver uses the SIMPLEC algorithm (Van Doormal and Raithby 1984) on a non-staggered grid to handle the coupling of water level and velocity. Primary variables u-, v-velocity, and water level are stored on the same set of grid points, and fluxes at cell faces are determined using a Rhie and Chow (1983) type momentum interpolation method (Wu et al. 2011). The explicit solver uses a staggered grid with velocities at the cell faces and the water levels and water depths at the cell centers (Buttolph et al. 2006a). CMS-Flow also calculates salinity and sediment transport and morphology change.

CMS-Wave is a spectral wave transformation model and solves the waveaction balance equation using a forward marching Finite Difference Method (Mase et al. 2005; Lin et al. 2008). CMS-Wave includes physical processes such as wave shoaling, refraction, diffraction, reflection, wavecurrent interaction, wave breaking, wind wave generation, white capping of waves, and the influence of coastal structures. The CMS takes advantage of the SMS interface (Zundel 2006) versions 8.2 through 11.1 for grid generation, model setup, plotting and post-processing of modeling results. The SMS also provides a link between the CMS and the Lagragian Particle Tracking Model (PTM) (MacDonald et al. 2006).

Typical applications of CMS-Flow include analyses of past and future navigation channel performance; wave, current, and wave-current interaction in channels and in the vicinity of navigation structures; and sediment management issues around coastal inlets and adjacent beaches. Some examples of CMS-Flow applications are: Batten and Kraus (2006), Buttolph et al. (2006b), Zarillo and Brehin (2007), Li et al. (2009), Li et al. (2011), Beck and Kraus (2010), Byrnes et al. (2010), Rosati et al. (2011), Reed and Lin (2011), and Wang and Beck (2011). Several verification and validation tests are presented in Lin et al (2011) for waves, in Sánchez et al. (2011) for hydrodynamics, and Sánchez et al. (2011a,b) for sediment transport and morphology change.

Both CMS-Flow and CMS-Wave rely on the SMS for grid generation, model setup and viewing results. Chapter 4 describes the user interface and contains step-by-step instructions on using the interface as well as preparing input files, and analyzing and viewing results. In addition, several Matlab and Fortran utilities are described in the Appendices.

The User Manual is organized as follows. Chapter 2 presents the theoretical background; Chapter 3 presents the numerical methods, Chapter 4 is the User Guide, Chapter 5 is the summary, and Chapter 6 contains the references.

2 Mathematical Formulations

Hydrodynamics

Continuity and Momentum

Assuming depth-uniform currents in the presence of oscillatory waves, the general depth- and phase-averaged continuity and momentum equations may be written as (Phillips 1977, Mei 1983, and Svendsen 2006)

$$\frac{\partial h}{\partial t} + \frac{\partial (hV_j)}{\partial x_j} = S_M \tag{2-1}$$

$$\frac{\partial(hV_i)}{\partial t} + \frac{\partial(hV_jV_i)}{\partial x_j} - \varepsilon_{ij}f_chV_j = -gh\frac{\partial\overline{\eta}}{\partial x_i} - \frac{h}{\rho}\frac{\partial p_{atm}}{\partial x_i} + \frac{\partial}{\partial x_j}\left(v_th\frac{\partial V_i}{\partial x_j}\right) - \frac{1}{\rho}\frac{\partial}{\partial x_j}\left(S_{ij} + R_{ij} - \rho hU_{wi}U_{wj}\right) + \frac{\tau_{si}}{\rho} - \frac{\tau_{bi}}{\rho}$$
(2-2)

where

t = time [s]

 f_c = Coriolis parameter [rad/s] = $2\Omega \sin \phi$ where Ω = 7.29x10⁻⁵ rad/s is the earth's angular velocity of rotation and ϕ is the latitude in degrees

h = wave-averaged total water depth $h = \zeta + \overline{\eta}$ [m]

 $\overline{\eta}$ = wave-averaged water surface elevation with respect to reference datum [m]

 ζ = water depth (positive downwards) with respect to vertical reference datum [m]

 S_M = water source/sink term due to precipitation, evaporation and structures (e.g. culverts) [m/s]

 V_i = total flux velocity defined as $V_i = U_i + U_{wi}$ [m/s]

 U_i = wave- and depth-averaged (depth-uniform) current velocity vector [m/s]

 U_{wi} = wave flux velocity vector [m/s]

g = gravitational constant (9.806 m/s²)

 p_{atm} = atmospheric pressure [Pa]

 ρ = water density (~1025 kg/m³)

 v_t = turbulent eddy viscosity [m²/s]

 τ_{si} = wind surface stress vector [Pa]

 S_{ii} = wave radiation stress tensor [Pa]

 R_{ii} = surface roller stress tensor [Pa]

 $\tau_{bi}\,$ = combined wave-current mean bed shear stress vector [Pa]

The equations above are similar to those derived by Svendsen 2006, except for the inclusion of the water source/sink term in the continuity equation, and the atmospheric pressure and surface roller terms in the momentum equation. It is also noted that the horizontal mixing term is formulated differently as a function of the total flux velocity similar to the Generalized Lagrangian Mean (GLM) approach (Andrews and McIntyre, 1978; Walstra et al, 2000). This approach is arguably more physically meaningful and also simplifies the descritization.

Figure 2-1 shows the vertical conventions used for mean water surface elevation and bed elevations. The arrows indicate the reference elevation for each variable. Note that the total water depth is always positive.

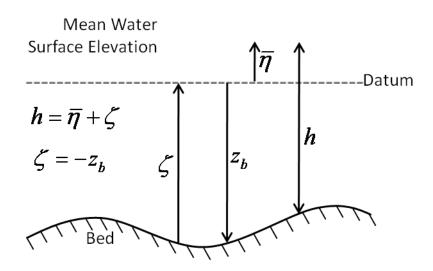


Figure 2-1. Vertical conventions used for mean water surface elevation and bed elevations.

Here the Boussinesq approximation has been made for approximating the Reynolds stresses.

Wave Mass Flux Velocity

In the presence of waves, the oscillatory wave motion produces a net mass transport referred to as Stokes Drift. In the surf zone, the surface roller also provides a contribution to the mass flux. The wave mass flux velocity is defined as the wave mass flux divded by the local wave-averaged water depth and is approximated by (Phillips 1977; Svendsen 2006)

$$U_{wi} = \frac{(E_w + 2E_{sr})w_i}{\rho hc}$$
(2-3)

where

C = wave speed [m/s]

 $E_w =$ wave energy $= 1/16\rho g H_s^2$ [N/m]

 E_{sr} = surface roller energy density

 H_s = significant wave height [m]

 $w_i =$ wave unit vector $= (\cos \theta, \sin \theta)$ [-]

The second contribution due to the surface roller is only present in the surf zone.

Mean Wave-Current Bottom Friction

The mean (short-wave averaged) bed shear stress $\tau_{\scriptscriptstyle bi}$ is calculated as

$$\tau_{bi} = \rho m_b \lambda_{wc} c_b U U_i \tag{2-4}$$

where

 $c_{b} =$ bed friction coefficient [-]

 m_b = bed slope coefficient [-]

 λ_{wc} = nonlinear bottom friction enhancement factor ($\lambda_{wc} \ge 1$) [-]

 $U = \text{current magnitude} = \sqrt{U_i U_i} \text{ [m/s]}$

The bottom roughness is specified with either a Manning's roughness coefficient, roughness height (Nikuradse bed roughness), or bed friction coefficient. It is important to note that the roughness value is held constant throughout the simulation and is not changed according to bed composition and bed forms. It is also independent of the bed roughness calculation used for various sediment transport formula, since different formulas use different methods for computing the bed shear stresses.

The bed friction coefficient, c_b , is related to the Manning's roughness coefficient n by

$$c_h = g n^2 h^{-1/3} \tag{2-5}$$

Similarly, the bed friction is related to the roughness length z_0 by

$$c_b = \left(\frac{\kappa}{\ln(z_0/h) + 1}\right)^2 \tag{2-6}$$

where $\kappa = 0.4$. The roughness length is related to the Nikuradse roughness (roughness height in SMS) by $z_0 = k_s / 30$.

The nonlinear bottom friction enhancement factor is calculated using one of the following formulations:

- 1. Quadratic formula (QUAD)
- 2. Soulsby (1995) two coefficient data fit (DATA2)
- 3. Soulsby (1995) thirteen coefficient data fit (DATA13)
- 4. Fredsoe (1984) wave-current boundary layer model (F84)
- 5. Huynh-Thanh and Temperville (1991) wave-current boundary layer model (HT91)

In the case of the quadratic formula,

$$\lambda_{wc} = \frac{\sqrt{U^2 + c_w u_w^2}}{U}$$
(2-7)

where the DATA2, DATA13, F84, and HT91 formulations are calculated using general parameterization of Soulsby (1995),

$$\lambda_{wc} = 1 + bX^{P} \left(1 - X \right)^{q}$$
(2-8)

where $X = \tau_c / (\tau_c + \tau_w)$, and *b*, *P* and *q* are coefficients that depend on the formulation selected. τ_c and τ_w are the current- and wave-related bed shear stress magnitudes.

The bed slope coefficient is calculated as

$$m_b = \sqrt{1 + \left(\frac{\partial z_b}{\partial x}\right)^2 + \left(\frac{\partial z_b}{\partial y}\right)^2}$$
(2-9)

where z_b is the bed elevation.

Wave Radiation Stresses

The wave radiation stresses S_{ij} are calculated using the linear wave theory as

$$S_{ij} = \iint E_w(f,\theta) \left[n_g w_i w_j + \delta_{ij} \left(n_g - \frac{1}{2} \right) \right] df d\theta$$
(2-10)

where

$$f =$$
 the wave frequency, [1/s]

 θ = the wave direction,

$$\delta_{ij}$$
 = the delta function. δ_{ij} =1 for *i*=*j*, and δ_{ij} =0 for *i*≠*j*.

and

$$n_{g} = \frac{c_{g}}{c} = \frac{1}{2} \left(1 + \frac{2kh}{\sinh 2kh} \right)$$
(2-11)

in which c_g is the wave group velocity, c is the wave celerity, and k is the wave number.

Wind Surface Stress

The wind surface stress is calculated as

$$\tau_{si} = \rho_a c_D W W_i \tag{2-12}$$

where

$$\rho_a$$
 = air density at sea level [kg/m³]
 c_D = wind drag coefficient [-]
 W_i = 10-m wind speed [m/s]
 W = 10-m wind velocity magnitude = $\sqrt{W_i W_i}$ [m/s]

The wind speed is calculated using either an Eulerian or Lagrangian reference frame as

$$W_i = W_i^E - \gamma_w U_i \tag{2-13}$$

where W_i^E is the 10-m atmospheric wind speed relative to the solid earth (Eulerian wind speed)in [m/s], and γ_w is equal to 0 for the Eulerian refer-

ence frame or 1 for the Lagrangian reference frame. Using the Lagrangian reference frame or relative wind speed is more accurate and realistic for field applications (Bye 1985; Pacanowski 1987; Dawe and Thompson 2006), but the option to use the Eulerian wind speed is provided for idealized cases. The drag coefficient is calculated using the formula of Hsu (1988) and modified for high wind speeds based on field data by Powell et al. (2003).

$$c_D = \begin{cases} \left(\frac{\kappa}{14.56 - 2\ln W}\right)^2 & \text{for } W \le 30 \,\text{m/s} \\ 10^{-3} \max(3.86 - 0.04W, 1.5) & \text{for } W > 30 \,\text{m/s} \end{cases}$$
(2-14)

Powell et al. (2003) speculate that the reason for the decrease in drag coefficient is due to increasing foam coverage leading to the formation of a "slip" surface at the air-sea interface.

Wind measurements taken at heights other than 10 m, are converted using the 1/7 rule (SPM 1984)

$$W_{i} = W_{i}^{z} \left(\frac{10}{z}\right)^{1/7}$$
(2-15)

where z is the elevation above the sea surface of the wind measurement.

Eddy Viscosity

The term eddy viscosity comes from the fact that small-scale vortices or eddies on the order of the grid cell size are not resolved and only the large scale flow is simulated. The eddy viscosity is intended to simulate the dissipation of energy at smaller scales than the model can simulate. In near-shore environments, large mixing or turbulence occurs due to waves, wind, bottom shear, and strong horizontal gradients; and therefore the eddy viscosity is an important aspect which has a large influence on the calculated flow field and sediment transport. In CMS-Flow, total eddy viscosity v_t is calculated as the sum of a base value v₀, the current-related eddy viscosity v_c and the wave-related eddy viscosity v_w,

$$v_t = v_0 + v_c + v_w \tag{2-16}$$

The base value for the eddy viscosity is approximately equal to the kinematic eddy viscosity and can be changed using the advanced cards.

Current-Related Eddy Viscosity Component

There are four options for the current-related eddy viscosity: Falconer, Parabolic, Subgrid, and Mixing-Length. The default turbulence model is the subgrid model, but may be changed in the advanced cards section of the cmcards file.

Falconer Equation

The Falconer (1980) equation is the default method used in the previous version of CMS, known as M2D. The Falconer (1980) equation is given by

$$v_c = 0.575c_b Uh$$
 (2-17)

where c_b is the bottom friction coefficient, *U* is the depth-averaged current velocity magnitude, and *h* is the total water depth.

Depth-averaged Parabolic Model

The second option is the depth-averaged parabolic model given by

$$v_c = c_1 u_* h \tag{2-18}$$

where c_1 is approximately equal to $\kappa/6$.

Subgrid Model

The third option for calculating v_c is the subgrid turbulence model given by

$$v_c = c_1 u_* h + c_2 \Delta \left| \overline{S} \right| \tag{2-19}$$

where c_1 and c_2 are empirical coefficients related to the turbulence produced by the bed shear and horizontal velocity gradients, and Δ is the average grid area. The parameter c_1 is approximately equal to 0.0667 (default) but may vary from 0.01-0.2. The variable c_2 is equal to approximately the Smagorinsky coefficient and may vary from 0.1 to 0.3 (default is 0.2). $|\overline{S}| |S|$ is equal to

$$\left|\overline{S}\right| = \sqrt{2e_{ij}e_{ij}}$$
, with $e_{ij} = \frac{1}{2}\left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i}\right)$ (2-20)

The subgrid turbulence model parameters may be changed in the advanced cards.

Mixing Length Model

The Mixing Length Model implemented in CMS includes a component due to the vertical shear and is given by

$$v_{c} = \sqrt{\left(c_{1}u_{*c}h\right)^{2} + \left(l_{h}^{2}\left|\overline{S}\right|\right)^{2}}$$
(2-21)

where the mixing length l_h is determined by $l_h = \kappa \min(c_2 h, y)$, with y being the distance to the nearest wall and c_2 is an empirical coefficient between 0.3-1.2. The above equation takes into account the effects of bed shear and horizontal velocity gradients respectively through the first and second terms on its right-hand side. It has been found that the modified mixing length model is better than the depth-averaged parabolic eddy viscosity model that accounts for only the bed shear effect.

Wave-Related Eddy Viscosity

The wave component of the eddy viscosity is separated into two components

$$v_{w} = c_{3}u_{w}H_{s} + c_{4}h\left(\frac{D_{br}}{\rho}\right)^{1/3}$$
(2-22)

where c3 and c4 are empirical coefficients, H_s is the significant wave height and u_w is the peak bottom orbital velocity based on the significant wave height. The first term on the R.H.S. of Equation (24) represents the component due to wave bottom friction and the second term represents the component due to wave breaking. The coefficient c3 is approximately equal to 0.1 and may vary from 0.05 to 0.2. The coefficient c4 is approximately equal to 0.08 and may vary from 0.04 to 0.15.

Boundary Conditions

Rigid Wall Boundary Condition

A wall function is used to simulate the extra flow drag produced by the presence of banks or shores. The resulting wall shear stress is modeled as

$$\tau_{wall} = -\lambda_w U_{\parallel} \tag{2-23}$$

where $\lambda_w = \rho u_*^w \kappa / \ln(Ey_p^+)$ with $y_p^+ = u_*^w y_p / \nu$. Here *E* is a wall roughness parameter, y_p^+ is the distance from the wall to point *p* and u_*^w is the wall shear stress defined as $u_*^w = \sqrt{\tau_{wall} / \rho}$. The wall roughness is calculated using the formula of Cebeci and Bradshaw (1977),

$$E = \exp\left(\kappa \left[B_0 - \Delta B\right]\right) \tag{2-24}$$

where B_0 is a constant equal to 5.2 and ΔB is equal to

$$\Delta B = \begin{cases} 0 & k_s^+ < 2.25 \\ \left(B_0 - 8.5 + \frac{1}{\kappa} \ln k_s^+\right) \sin\left(0.4258 \left[\ln k_s^+ - 0.811\right]\right) & 2.25 \le k_s^+ < 90 \,(2\text{-}25) \\ B_0 - 8.5 + \frac{1}{\kappa} \ln k_s^+ & k_s^+ \ge 90 \end{cases}$$

where k_s^+ is the wall Reynolds number given by $k_s^+ = u_*^w k_s / v$.

Flux Boundary Condition

The flux boundary is typically applied to the upstream end of a river or stream. In CMS, a conveyance approach is used to distribute the total flux across the boundary. In this approach, the flow discharge, q_B at each boundary cell *B* is calculated across a boundary according to

$$q_{B} = \frac{Q_{b}}{\sum (h_{B}^{1+r} / n_{B})\Delta l} \frac{h_{B}^{1+r}}{n_{B}}$$
(2-26)

where Q_b is total flow discharge, *n* is the Manning's coefficient, *r* is an empirical constant equal to approximately 2/3 and Δl is the cell width in the transverse direction.

Water Level Boundary Condition

Water level time series, both constant and spatially variable, are applied at ghost cells. This treatment is common practice in many finite volume models. It is not strictly clamped and allows for some relaxation of the boundary which improves stability and convergence. When applying a Water Level BC to the nearshore, the wave-induced setup is not included and can lead to local flow reversals and boundary problems. This problem is avoided by adjusting the local water to account for the cross-shore wind and wave setup similar that described in Reed and Militello (2005).

Tidal/Harmonic Boundary Condition

Tidal water level predictions are based on the official United States National Oceanographic and Atmospheric Administration (<u>http://tidesonline.nos.noaa.gov</u>) and National Ocean Service (<u>http://coops.nos.noaa.gov</u>) prediction formula

$$\eta(t) = \sum f_i A_i \cos\left(\omega_i t + V_i^0 + \hat{u}_i - \kappa_i\right)$$
(2-27)

where A_i is the constituent *mean* amplitude, f_i is a node factor which is time varying correction to the mean amplitude, $V_i^0 + \hat{u}_i$ is the time varying constituent *equilibrium* phase, and κ_i is the constituent phase lag or epoch. The speed of the constituent ω_i is given in degrees per mean solar hour and *t* is a serial time in hours from midnight starting the year of predictions. The equilibrium phase has a uniform component V_i^0 and a relatively smaller periodic component. The zero-superscript of V_i^0 indicates that it refers to the constituent phase at zero time. The table (Table 2-1) below shows a list of the tidal constituents currently supported in CMS.

Constituent	Speed	Constituent	Speed	Constituent	Speed	Constituent	Speed
SA*	0.041067	SSA*	0.082137	MM*	0.54438	MSF*	1.0159
MF*	1.098	2Q1*	12.8543	Q1*	13.3987	RHO1*	13.4715
01*	13.943	M1*	14.4967	P1*	14.9589	S1*	15.0

Table 2-1. Tidal Constituents names and speeds in solar hours implemented in CMS.

K1*	15.0411	J1*	15.5854	001*	16.1391	2N2*	27.8954
MU2*	27.9682	N2*	28.4397	NU2*	28.5126	M2	28.9841
LDA2*	29.4556	L2*	29.5285	T2*	29.9589	S2	30
R2*	30.0411	К2	30.0821	2SM2*	31.0159	2MK3*	42.9271
M3*	43.4762	MK3*	44.0252	MN4*	57.4238	M4	57.9682
MS4*	58.9841	S4*	60.0	M6	86.9523	S6*	90.0
M8*	115.9364						

* Only available through advanced cards for CMS >v4.0

If a harmonic boundary condition is applied, then the node factors and equilibrium arguments are set to zero.

Similary to the water level boundary condition, the local water level at the boundary is adjusted to account for the wind and wave setup in order to avoid local flow reversals or instabilities (Reed and Militello 2005).

Cross-shore Boundary Condition

In the implicit flow solver a cross-shore boundary condition is applied by solving the 1-D cross-shore momentum equation including wave and wind forcing (Wu et al. 2011a, 2011b). Along a cross-shore boundary, it is assumed that a well-developed longshore current exists. Thus, the along-shore (*x*-direction) momentum equation can be reduced to

$$\frac{\partial}{\partial y} \left(v_t h \frac{\partial V_x}{\partial y} \right) = \frac{1}{\rho} \left(\tau_{sx} + \tau_{wx} - \tau_{bx} \right)$$
(2-28)

where τ_{sx} , τ_{wx} , and τ_{bx} are the surface, wave, and bottom stresses in the long-shore direction, respectively. The equation above is solved iteratively for the longshore current velocity. The cross-shore (*y*) component of the velocity may be copied from internal nodes.

The water level due to waves and winds at the cross-shore boundary can be determined by assuming a zero alongshore gradient of flow velocity and negligible cross-shore current velocity, the y (cross-shore) momentum equation reduces to

$$\rho gh \frac{\partial \overline{\eta}}{\partial y} = \tau_{sy} + \tau_{wy} \tag{2-29}$$

where τ_{sy} and τ_{wy} are the wave and wind stresses in the cross-shore direction.

Sediment Transport

Nonequilibrium Total-Load Transport Model

Total-load Transport Equation

The single-sized sediment transport model described in Sánchez and Wu (2011a,b) is extended to multiple-sized sediments. In this model, the sediment transport is separated into current- and wave-related transports. The transport due to currents includes the stirring effect of waves; and the wave-related transport includes the transport due to asymmetric oscillatory wave motion and also steady contributions by Stokes drift, surface roller, and undertow. The current-related bed and suspended transports are combined into a single total-load transport equation, thus reducing the computational costs and simplifying the bed change computation. The 2DH transport equation for the current-related total load is

$$\frac{\partial}{\partial t} \left(\frac{hC_{tk}}{\beta_{tk}} \right) + \frac{\partial(hV_jC_{tk})}{\partial x_j} = \frac{\partial}{\partial x_j} \left[v_s h \frac{\partial(r_{sk}C_{tk})}{\partial x_j} \right] + \alpha_t \omega_{sk} \left(C_{t^*k} - C_{tk} \right) \quad (2-30)$$

for j = 1, 2; k = 1, 2, ..., N, where *N* is the number of sediment size classes

t = time [s]

h =total water depth [m]

 x_j =Cartesian coordinate in the *j*th direction [m]

 U_i = depth-averaged current velocity [m/s]

 C_{tk} = depth-averaged total-load sediment concentration for size class *k* defined as $C_{tk} = q_{tk} / (Uh)$ in which q_{tk} is the total-load transport [m³/m³]

 C_{tk^*} = depth-averaged total-load sediment concentration for size class *k* and described in the <u>Equilibrium Concentration and Trans-</u> <u>port Rates</u> section [m³/m³]

 β_{tk} = the total-load correction factor described in the <u>Total-Load</u> <u>Correction Factor</u> section [-] r_{sk} = fraction of suspended load in total load for size class *k* (equal to 1 for fine-grained sediments) and is described in Fraction of Suspended Sediments section.

 v_s = horizontal sediment mixing coefficient described in the Horizontal Sediment Mixing Coefficient section.

 α_t = total-load adaptation coefficient described in the <u>Adaptation</u> <u>Coefficient</u> section.

 ω_{sk} = sediment fall velocity.

The above equation may be applied to single-sized sediment transport, by using a single sediment size class. The bed composition however is allowed to vary even for single-size sediment transport.

Fraction of Suspended Sediments

In order to solve the system of equations for sediment transport implicitly the fraction of suspended sediments must be determined explicitly. This is done by assuming

$$r_{sk} = \frac{q_{sk}}{q_{tk}} \simeq \frac{q_{sk^*}}{q_{tk^*}}$$
 (2-31)

where q_{sk} and q_{tk} is the actual fractional suspended- and total-load transport rates and q_{sk*} and q_{tk*} are the equilibrium fractional suspended- and total-load transport rates.

Adaptation Coefficient

The total load adaptation coefficient α_t is an important parameter in the sediment transport model. There are many variations of this parameter in literature. CMS uses an adaptation coefficient α_t which is related to the total load adaptation length T_t and time by

$$L_t = \frac{Uh}{\alpha_t \omega_s} = UT_t \tag{2-32}$$

where ω_s is the sediment fall velocity, U is the depth-averaged current velocity, and h is the total water depth. The adaptation length (time) is a characteristic distance (time) for sediment to adjust from non-equilibrium to equilibrium transport. Because the total load is a combination of the bed and suspended loads, its adaptation length may be calculated as $L_t = r_s L_s + (1 - r_s) L_b$ or $L_t = \max(L_s, L_b)$, where L_s and L_b are the suspendedand bed-load adaptation lengths. L_s is defined as

$$L_s = \frac{Uh}{\alpha \omega_s} = UT_s \tag{2-33}$$

in which α and T_s are the adaptation coefficient lengths for suspended load. There are several expressions in the literature for calculating α , either empirical or based on analytical solutions to the pure vertical convection-diffusion equation of suspended sediment. One example of an empirical formula is that proposed by Lin (1984)

$$\alpha = 3.25 + 0.55 \ln\left(\frac{\omega_s}{\kappa u_*}\right) \tag{2-34}$$

where u_* is the bed shear stress, and κ is the von Karman constant. Armanini and di Silvio (1986) proposed an analytical equation

$$\frac{1}{\alpha} = \frac{\delta}{h} + \left(1 - \frac{\delta}{h}\right) \exp\left[-1.5\left(\frac{\delta}{h}\right)^{-1/6} \frac{\omega_s}{u_*}\right]$$
(2-35)

where δ is the thickness of the bottom layer defined by $\delta = 33z_0$ and z_0 is the zero-velocity distance from the bed. Gallapatti (1983) proposed the following equation to determine the suspended load adaptation time

$$T_{s} = \frac{h}{u_{*}} \exp \begin{bmatrix} \left(1.57 - 20.12u_{r}\right)\omega_{*}^{3} + \left(326.832u_{r}^{2.2047} - 0.2\right)\omega_{*}^{2} \\ + \left(0.1385\ln u_{r} - 6.4061\right)\omega_{*} + \left(0.5467u_{r} - 2.1963\right) \end{bmatrix}$$
(2-36)

where u_{*c} is the current related bottom shear velocity, $u_r = u_* / U$, and $\omega_* = \omega_s / u_*$.

The bed-load adaptation length L_b is generally related to the dimension of bed forms such as sand dunes. Large bed forms are generally proportional to the water depth and therefore the bed load adaptation length can be estimated as $L_b = a_b h$ in which a_b is an empirical coefficient on the order of 5-10. Fang (2003) found that an L_b of approximately two or three times the grid resolutions works well for field applications. However, although there is some guidance on ways to estimate L_b , its determination is still empirical and in the developmental stage. For a detailed discussion of the adaptation length see Wu (2007). In general, it is recommended that the adaptation length be calibrated with field data in order to have the best and most reliable results.

Total-Load Correction Factor

The correction factor β_{tk} accounts for the vertical distribution of the suspended sediment concentration, and velocity profiles as well as the fact that bed load travels a slower velocity than the depth-averaged current (see Figure 4). By definition β_{tk} is the ratio of the depth-averaged total-load and flow velocities.

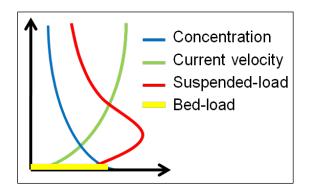


Figure 2-2. Schematic of sediment and current vertical profiles.

In a combined bed load and suspended load model, the correction factor is given by

$$\beta_{tk} = \frac{1}{r_{sk} / \beta_{sk} + (1 - r_{sk}) U / u_{bk}}$$
(2-37)

where u_{bk} is the bed load velocity and β_{tk} is the suspended load correction factor and is defined as the ratio of the depth-averaged sediment and flow velocities. Because most of the sediment is transported near the bed, both

the total and suspended load correction factors are usually less than 1 and typically in the range of 0.3 and 0.7, respectively. By assuming logarithmic current velocity and exponential suspended sediment concentration profiles, an explicit expression for the suspended load correction factor β_{sk} may be obtained as

$$\beta_{s} = \frac{\int_{a}^{h} ucdz}{U \int_{a}^{h} cdz} = \frac{E_{1}(\phi A) - E_{1}(\phi) + \ln(A/Z) e^{-\phi A} - \ln(1/Z) e^{-\phi}}{e^{-\phi A} \left[\ln(1/Z) - 1 \right] \left[1 - e^{-\phi(1-A)} \right]}$$
(2-38)

where $\phi = \omega_s h / \varepsilon$, A = a / h, $Z = z_0 / h$, ε is the vertical mixing coefficient, a is a reference height for the suspended load, and E_1 is the exponential integral. The equation can be further simplified by assuming that the reference height is proportional to the roughness height (e.g. $a = 30z_0$), so that $\beta_s = \beta_s (Z, \phi)$. Figure 2-3 shows a comparison of the suspended load correction factor based on the logarithmic velocity with exponential and Rouse suspended sediment profiles.

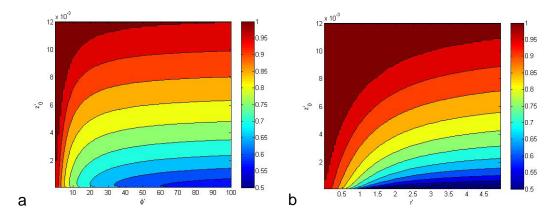


Figure 2-3. Suspend load correction factors based on the logarithmic velocity profile and exponential (a) and Rouse (b) suspended sediment profile.

The bed load velocity u_b is calculated using the van Rijn (1984a) formula with re-calibrated coefficients from Wu *et al.* (2006)

$$u_{b} = 1.64 \left[\left(\frac{U_{*}}{U_{*cr}} \right)^{2} - 1 \right]^{0.5} \sqrt{(s-1)gd_{50}}$$
(2-39)

where *s* is the specific gravity, *g* is the gravitational constant, d_{50} is a characteristic median grain size diameter, U_* is the effective bed shear velocity related to grain roughness and U_{*cr} is the critical bed shear velocity for sediment motion as given by the shields diagram.

Bed Change Equation

The fractional bed change is calculated as

$$\frac{1-p'_m}{f_{morph}} \left(\frac{\partial z_b}{\partial t}\right)_k = \alpha_t \omega_{sk} \left(C_{tk} - C_{tk^*}\right) + \frac{\partial}{\partial x_j} \left(D_s \left|q_{bk}\right| \frac{\partial z_b}{\partial x_j}\right)$$
(2-40)

where

 z_b = the bed elevation with respect to the vertical datum [m]

 p'_m = the bed porosity [-]

 D_s = the bed-slope coefficient [-]

 $q_{bk} = hUC_{tk}(1-r_{sk})$ is the bed load [m²/s]

 f_{morph} = morphologic acceleration factor [-]

The total bed change is calculated as the sum of Equation (41) for all size classes

$$\frac{\partial z_b}{\partial t} = \sum_k \left(\frac{\partial z_b}{\partial t}\right)_k \tag{2-41}$$

The purpose of the morphologic acceleration factor f_{morph} is to speed-up the bed change so that the simulation time t_{sim} represents approximately the change that would occur in $t_{morph} = f_{morph} t_{sim}$. The factor should be used with caution and only for idealized cases or time periods which are periodic (mainly tidal). If time varying winds or waves are important in driving sediment transport, then this parameter is not recommended.

Bed material sorting and layering

The bed material above the erodible depth, is divided in multiple layers, and the sorting of sediments is calculating using the mixing layer concept (Hirano 1971; Karim and Kennedy 1982; and Wu 1991). The mixing layer is the top layer of the bed, which directly exchanges with moving sediments. Figure 2-4 is a schematic of the multi-layer bed-sorting model.

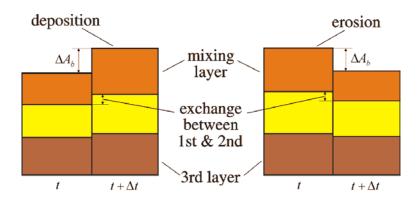
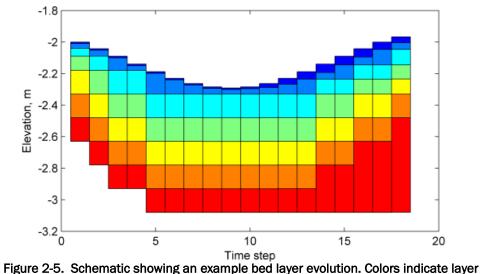


Figure 2-4. Schematic of the multi-layer bed material sorting model.

The temporal variation of the bed-material gradation in the mixing layer is calculated as (Wu 2007)


$$\frac{\partial(\delta_1 p_{1k})}{\partial t} = \left(\frac{\partial z_b}{\partial t}\right)_k + p_{bk}^* \left(\frac{\partial \delta_1}{\partial t} - \frac{\partial z_b}{\partial t}\right)$$
(2-42)

where δ_1 is the thickness of the mixing layer. p_{bk}^* is equal to p_{1k} for $\partial z_b / \partial t - \partial \delta_1 / \partial t \ge 0$, and equal to the bed material gradation in the second sediment layer for $\partial z_b / \partial t - \partial \delta_1 / \partial t < 0$. The bed-material sorting in the second layer is calculated as

$$\frac{\partial(\delta_2 p_{2k})}{\partial t} = -p_{1k}^* \left(\frac{\partial \delta_1}{\partial t} - \frac{\partial z_b}{\partial t} \right)$$
(2-43)

where δ_2 is the thickness of the second layer, and p_{2k} is the fraction of the k^{th} sediment size in the second layer. The last equation assumes no material exchange between the sediment layers below the second layer.

The sediment transport, bed change, and bed gradation are solved simultaneously (coupled), but are decoupled from the flow calculation at the time step level. To illustrate the bed layering process, Figure 2-5 shows an example of the temporal evolution of 7 bed layers during erosional and depositional regimes.

number.

Mixing Layer Thickness

The mixing layer thickness is calculated as

$$\delta_1 = \max(0.5\Delta, 2d_{50}, \delta_{1,\min}, \Delta z_b + \delta_{1,\min})$$
 (2-44)

where Δ is the dune height, and $\delta_{1,\min}$ is a user-specified minimum layer thickness. The third argument above is important for strong deposition. For cell with a hard bottom, the mixing layer is calculated

$$\delta_{1,hb} = \min(\delta_1, z_b - z_{hb}) \tag{2-45}$$

Equilibrium Concentration and Transport Rate

In order to close the system given by the sediment transport, bed change, and bed sorting equations, the fractional equilibrium depth-averaged total-load concentration C_{tk^*} needs to be estimated from empirical formula. For convenience C_{tk^*} is written in general form as

$$C_{tk^*} = p_{1k} C_{tk}^* \tag{2-46}$$

where p_{1k} is the fraction of the sediment size k in the first (top) bed layer and C_{tk}^* is the potential equilibrium total-load concentration. The potential concentration C_{tk}^* can be interpreted as the equilibrium concentration for uniform sediment of size d_k . The above equation is essential to the coupling of the sediment transport, bed change, and bed sorting equations. The depth-averaged equilibrium concentration is calculated

$$C_{tk^*} = \frac{q_{tk^*}}{Uh} \tag{2-47}$$

where q_{tk^*} is the total load transport estimated from empirical formula. The total load is the sum of bed load and suspended load: $q_{tk^*} = q_{sk^*} + q_{bk^*}$.

Equilibrium Transport Formulas

Lund-CIRP SedIment Transport Formula

Lund-CIRP Bed-load Transport Formula

Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended loads under combined waves and currents. These are referred to as the Lund-CIRP transport formulas. The general transport formulas can be used for both symmetric and asymmetric waves but for simplicity the waves are assumed to be symmetric in CMS. The current-related bed load transport with wave stirring is given by

$$\frac{q_{b^*}}{\sqrt{(s-1)gd_{50}^3}} = f_b \rho_s 12\sqrt{\Theta_c} \Theta_{cw,m} \exp\left(-4.5\frac{\Theta_{cr}}{\Theta_{cw}}\right)$$
(2-48)

where

$$q_{b^*}$$
 = Equilibrium bed load transport [kg/m/s]

 d_{50} = median grain size [m]

s = sediment specific gravity or relative density [-]

g = gravitational constant (9.81 m/s²)

- ρ_s = sediment density (~2650 kg/m³)
- Θ_c = Shields parameters due to currents [-]

 $\Theta_{cw,m}$ = mean Shields parameters due to waves and currents [-]

 Θ_{cw} = maximum Shields parameters due to waves and currents [-]

 Θ_{cr} = critical Shields parameter [-]

 f_b = Bed-load scaling factor (default 1.0)

The current related shear stress is calculated as

$$\tau_c = \rho c_b U^2 \tag{2-49}$$

where ρ is the water density, c_b is the bed friction coefficient, and U is the current velocity magnitude. The drag coefficient is calculated as

$$c_b = \left[\frac{\kappa}{\ln(h/z_0) - 1}\right]^2 \tag{2-50}$$

where κ is the von Karman constant (0.4), h is the total water depth, and z_0 is the roughness length calculated as $z_0 = k_s/30$ where k_s is the total bed Nikuradse roughness. The total bed roughness is assumed to be a linear sum of the grain-related roughness $k_{s,d}$, form-drag (ripple) roughness $k_{s,r}$, and sediment-related roughness $k_{s,s}$. Bed forms are also separated into current and wave-related bed forms. The current- and waverelated total roughness is then

$$k_{s,i} = k_{sg} + k_{sr,i} + k_{ss,i}$$
(2-51)

where the subscript *i* indicates either the current (*c*) or wave (*w*) related component. The grain-related roughness is estimated as $k_{sg} = 2d_{50}$.

The ripple roughness is calculated as (Soulsby 1997)

.

$$k_{sr,i} = 7.5H_{r,i}^2 / L_{r,i}, \qquad (2-52)$$

where $H_{r,i}$ and $L_{r,i}$ are either the current- or wave-related ripple height and length respectively. The current-related ripple height and length are calculated as

$$H_{r,c} = L_{r,c} / 7 \tag{2-53}$$

$$L_{r,c} = 1000d_{50} \tag{2-54}$$

The wave-related ripple height and length are calculated using the expressions proposed by van Rijn (1984b, 1989)

$$H_{r,w} = \begin{cases} 0.22A_{w} & \text{for } \psi_{w} < 10\\ 2.8 \times 10^{-13} (250 - \psi_{w})^{5} A_{w} & \text{for } 10 \le \psi_{w} < 250\\ 0 & \text{for } 250 \le \psi_{w} \end{cases}$$

$$(2-55)$$

$$(1.25A_{w}) & \text{for } \psi_{w} < 10$$

$$L_{r,w} = \begin{cases} 1.4 \times 10^{-6} (250 - \psi_w)^{2.5} A_w & \text{for } 10 \le \psi_w < 250 \\ 0 & \text{for } 250 \le \psi_w \end{cases}$$
(2-56)

where A_w is the semi-orbital excursion and ψ_w is the wave mobility parameter. The semi-orbital excursion is defined as

$$A_w = \frac{u_w T_P}{2\pi} \tag{2-57}$$

in which u_w is the maximum bottom orbital velocity, and T_P is the peak wave period. The wave mobility parameter ψ_w is defined as

$$\psi_w = \frac{u_w^2}{(s-1)gd_{50}} \tag{2-58}$$

The maximum wave bottom shear stress is given by (Johnson 1966)

$$\tau_w = \frac{1}{2}\rho f_w u_w^2 \tag{2-59}$$

where f_w is the wave friction factor calculated using the expression of Swart (1976)

$$f_w = \begin{cases} \exp\left(5.21r^{-0.19} - 6.0\right) & \text{for } r > 1.57\\ 0.3 & \text{for } r \le 1.57 \end{cases}$$
(2-60)

where *r* is the relative roughness defined as $r = A_w / k_{sg}$.

The current- and wave-related sediment roughness is estimated as

$$k_{ss,i} = 5d_{50}\Theta_i \tag{2-61}$$

The above equation has to be solved simultaneously with the expressions for the bottom shear stress, because the roughness depends on the stress. The exact solution is approximated using explicit polynomial fits in order to avoid time-consuming iterations in calculating the bed shear stress.

The critical shields parameter is estimated using the formula proposed by Soulsby and Whitehouse (1997)

$$\Theta_{cr} = \frac{0.3}{1+1.2d_*} + 0.055 \left[1 - \exp(-0.02d_*) \right]$$
(2-62)

where d_* is the dimensionless grain size

$$d_* = d_{50} \left[\frac{(s-1)g}{v} \right]$$
(2-63)

Lund-CIRP Suspended-load Transport Formula

The current-related suspended load transport with wave stirring is given by

$$\frac{q_{s^*}}{\sqrt{(s-1)gd_{50}^3}} = f_s \rho_s c_R U \frac{\varepsilon}{\omega_s} \left[1 - \exp\left(-\frac{\omega_s h}{\varepsilon}\right) \right]$$
(2-64)

where

 q_{s^*} = Suspended load transport [kg/m/s]

U = Depth-averaged current velocity [m/s]

h = Time-averaged total water depth [m]

- ω_s = Sediment fall velocity [m/s]
- \mathcal{E} = Vertical sediment diffusivity [m²/s]
- c_R = Reference bed concentration [kg/m³]

 f_s = Suspended-load scaling factor (default 1.0) [-]

The sediment fall velocity is calculated using the formula by Soulsby (1997)

$$\omega_s = \frac{\nu}{d} \left[\left(10.36^2 + 1.049 d_*^3 \right)^{1/2} - 10.36 \right]$$
(2-65)

where *d* is the grain size. The vertical sediment diffusivity is calculated as

$$\varepsilon = h \left(\frac{D_e}{\rho}\right)^{1/3} \tag{2-66}$$

where D_e is the total effective dissipation given by

$$D_e = k_b^3 D_b + k_c^3 D_c + k_w^3 D_w$$
(2-67)

in which k_b , k_c , and k_w are coefficients, D_b is the wave breaking dissipation, and D_c and D_w are the bottom friction dissipation due to currents and waves, respectively. The dissipations from bottom friction due to current, D_c , and from bottom friction due to waves, D_w , are expressed as

$$D_{c|w} = \tau_{c|w} u_{*,c|w}$$
(2-68)

where $u_{*c|w}$ is either the current or wave bottom shear velocity and $\tau_{c|w}$ is either the current or wave related shear stress. The wave breaking dissipation is obtained directly from the wave model. The coefficient k_b =0.017, and k_c and k_w are function of the Schmidt number:

$$k_{c|w} = \frac{\kappa}{6} \sigma_{c|w} \tag{2-69}$$

where $\sigma_{c|w}$ is either the current or wave-related Schmidt number calculated from the following relationships:

$$\sigma_{c} = \begin{cases} 0.7 + 3.6 \sin^{2.5} \left(\frac{\pi}{2} \frac{\omega_{s}}{u_{*c}} \right) & \text{for } \frac{\omega_{s}}{u_{*c}} \le 1 \\ 1 + 3.3 \sin^{2.5} \left(\frac{\pi}{2} \frac{u_{*c}}{\omega_{s}} \right) & \text{for } \frac{\omega_{s}}{u_{*c}} > 1 \end{cases}$$

$$\left[0.09 + 1.4 \sin^{2.5} \left(\frac{\pi}{2} \frac{\omega_{s}}{u_{*c}} \right) & \text{for } \frac{\omega_{s}}{u_{*c}} \le 1 \right]$$

$$(2-70)$$

$$\sigma_{w} = \begin{cases} (2 u_{*w}) & u_{*w} \\ 1 + 0.49 \sin^{2.5} \left(\frac{\pi}{2} \frac{u_{*w}}{\omega_{s}} \right) & \text{for } \frac{\omega_{s}}{u_{*w}} > 1 \end{cases}$$
(2-71)

In the case of coexisting waves and currents, the combined wave-current Schmidt number is estimated as

$$\sigma_{cw} = X_v^5 \sigma_c + \left(1 - X_v^5\right) \sigma_w \tag{2-72}$$

Modification for multiple-sized sediment transport

For multiple-sized (nonuniform) sediments, the fractional equilibrium sediment transport rates are calculated as

$$\frac{q_{bk^*}}{\sqrt{(s-1)gd_k^3}} = f_b \xi_k p_{bk} \rho_s 12\sqrt{\Theta_c} \Theta_{cw,m} \exp\left(-4.5\frac{\Theta_{crk}}{\Theta_{cw}}\right)$$
(2-73)

$$\frac{q_{sk^*}}{\sqrt{(s-1)gd_k^3}} = f_s \xi_k p_{bk} \rho_s c_{Rk} U \frac{\varepsilon}{\omega_{sk}} \left[1 - \exp\left(-\frac{\omega_{sk}h}{\varepsilon}\right) \right]$$
(2-74)

where the subscript *k* indicates variables which are calculated based only on the sediment size class *k*. ξ_k is the hiding and exposure coefficient described in <u>Hiding and Exposure</u>.

Van Rijn Sediment Transport Formulas

Van Rijn Reference Concentration Formula

The van Rijn (1984b) formula for near-bed reference concentration is written as

$$c_{a^*} = 0.015 \frac{d_{50}}{a d_*^{0.3}} \left(\frac{\tau_{b,\text{max}}}{\tau_{cr}} - 1 \right)^{1.5}$$
(2-75)

where $\tau_{b,\text{max}}$ is the combined wave-current maximum bed shear stress calculated as (Soulsby 1997)

$$\tau_{b,\max} = \sqrt{\left(\tau_b + \tau_w \cos\varphi\right)^2 + \left(\tau_w \sin\varphi\right)^2}$$
(2-76)

where τ_b is the mean shear stress by waves and current over a wave cycle, τ_w is the mean wave bed shear stress, and φ is the angle between the waves and the current.

The reference height, a, is estimated as

$$a = \max(0.5H_r, 0.01h) \tag{2-77}$$

where H_r is the ripple height and h is the total water depth.

Van Rijn Bed- and Supended-load Transport Formula

The van Rijn (1984a,b) transport equations for bed load and suspended load are used with the recalibrated coefficients of van Rijn (2007a,b), as given by

$$q_{b*} = f_b 0.015 \rho_s Uh \left(\frac{U_e - U_{cr}}{\sqrt{(s-1)gd_{50}}} \right)^{1.5} \left(\frac{d_{50}}{h} \right)^{1.2}$$
(2-78)

$$q_s^* = f_s 0.012 \rho_s U d_{50} \left(\frac{U_e - U_{cr}}{\sqrt{(s-1)gd_{50}}} \right)^{2.4} d_*^{-0.6}$$
(2-79)

where

 q_{b*} = Equilibrium bed-load transport [kg/m/s]

 q_{s^*} = Equilibrium suspended-load transport [kg/m/s]

 d_{50} = median grain size [m]

s = sediment specific gravity or relative density [-]

g = gravitational constant (9.81 m/s²)

 ρ_s = sediment density (~2650 kg/m³)

- *U* = depth-averaged current velocity [m/s]
- U_{cr} = critical depth-averaged velocity for initiation of motion
- U_e = effective depth averaged velocity
- f_s = Suspended-load scaling factor (default 1.0)
- f_b = Bed-load scaling factor (default 1.0)

The effective depth-averaged velocity is calculated as $U_e = U + 0.4u_w$. The critical velocity is estimated as $U_{cr} = \beta U_{crc} + (1 - \beta)U_{crw}$ where β is a blending factor and U_{crc} and u_{crw} are the critical velocities for currents and waves, respectively. As in van Rijn (2007), the critical velocity for currents is

$$U_{cr} = \begin{cases} 0.19(d_{50})^{0.1} \log_{10}\left(\frac{4h}{d_{90}}\right), & \text{for } 0.1 \le d_{50} \le 0.5 \,\text{mm} \\ 8.5(d_{50})^{0.6} \log_{10}\left(\frac{4h}{d_{90}}\right), & \text{for } 0.5 \le d_{50} \le 2.0 \,\text{mm} \end{cases}$$
(2-80)

where d_{90} is the sediment grain size in meters of 90th percentile. The critical velocity for waves is based on Komar and Miller (1975),

$$U_{crw} = \begin{cases} 0.24 \left[\left(s - 1 \right) g \right]^{0.66} \left(d_{50} \right)^{0.33} T_p^{0.33}, & \text{for } 0.1 \le d_{50} \le 0.5 \,\text{mm} \\ 0.95 \left[\left(s - 1 \right) g \right]^{0.57} \left(d_{50} \right)^{0.43} T_p^{0.14}, & \text{for } 0.5 \le d_{50} \le 2.0 \,\text{mm} \end{cases}$$
(2-81)

where T_p is the peak wave period. According to van Rijn (2007), the bed load transport formula predicts transport rates with a factor of 2 for velocities higher than 0.6 m/s, but underpredicts transports by a factor of 2-3 for velocities close to initiation of motion.

Modification for multiple-sized sediment transport

The van Rijn formula was originally proposed for well sorted sediments. The sediment availability is included by multiplication with the fraction of the sediment size class in the upper bed layer. The hiding and exposure is considered by in a correction factor which multiplies by the critical velocity. When applied to multiple-sized sediments, the fractional equilibrium transport rate is calculated as

$$q_{bk*} = f_b p_{bk} 0.015 \rho_s Uh \left(\frac{U_e - \xi_k U_{crk}}{\sqrt{(s-1)gd_k}} \right)^{1.5} \left(\frac{d_k}{h} \right)^{1.2}$$
(2-82)

$$q_{sk*} = f_s p_{bk} 0.012 \rho_s U d_k \left(\frac{U_e - \xi_k U_{crk}}{\sqrt{(s-1)gd_k}} \right)^{2.4} d_{*k}^{-0.6}$$
(2-83)

where p_{bk} is the fractional bed composition, ξ_k is the hiding and exposure coefficient. The subscript *k* indicates values which are calculated based on the *k*th sediment size class.

Soulsby-van Rijn Total-load Transport Formula

Soulsby (1997) proposed the following equation for the total load sediment transport rate under action of combined current and waves,

$$q_{t^*} = \rho_s A_s U \left[\left(U^2 + 0.018 \frac{u_{rms}^2}{C_d} \right)^{0.5} - U_{cr} \right]^{2.4}$$
(2-84)

~ .

where

 q_{t^*} = Equilibrium total-load transport [kg/m/s]

 ρ_s = sediment density (~2650 kg/m³)

- A_s = empirical coefficient = $A_{sb} + A_{ss}$
- U = depth-averaged current velocity [m/s]

*u*_{rms} = peak bottom wave orbital velocity based on the root-meansquared wave height [m/s]

 C_d = drag coefficient due to currents alone, and the coefficient [-]

 U_{cr} = critical depth-averaged velocity for initiation of motion [m/s]

The coefficients A_{sb} and A_{ss} are related to the bed and suspended loads, respectively, and given by

$$A_{sb} = f_b \frac{0.005h(d_{50} / h)^{1.2}}{\left[(s-1)gd_{50}\right]^{1.2}}, \ A_{ss} = f_s \frac{0.012d_{50}d_*^{-0.6}}{\left[(s-1)gd_{50}\right]^{1.2}}$$
(2-85)

Note that the bed and suspended load scaling factors are applied to the coefficients A_{sb} and A_{ss} .

The current drag coefficient is calculated as

$$C_d = \left[\frac{\kappa}{\ln(h/z_0) - 1}\right]^2 \tag{2-86}$$

with a constant bed roughness length z_0 set to 0.006 m.

The Soulsby-van Rijn formula is modified for multiple-sized sediments similarly to the van Rijn formula in the previous section.

$$q_{tk*} = p_{bk} A_{sk} U \left[\left(U^2 + 0.018 \frac{U_{rms}^2}{C_d} \right)^{0.5} - \xi_k U_{crk} \right]^{2.4}$$
(2-87)

where the subscript *k* indicates that the value is calculated based only on the size class *k* and not the median grain size.

Watanabe Total-load Transport formula

The equilibrium total load sediment transport rate q_{t*} is determined by Watanabe (1987) as

$$q_{t^*} = A_{Wat} U \left(\frac{\tau_{b,\max} - \tau_{cr}}{\rho g} \right)$$
(2-88)

where

 q_{t^*} = Equilibrium total-load transport [kg/m/s]

 $\tau_{b,\rm max}\,$ = combined wave-current maximum shear stress [Pa]

 ρ = water density (~1025 kg/m³)

g = gravitational constant (9.81 m/s²)

 τ_{cr} = critical shear stress of incipient motion in [Pa]

 A_{Wat} = empirical coefficient typically ranging from 0.1 to 2.

The critical shear stress is determined from the Shields diagram. The maximum bed shear stress $\tau_{b,max}$ is calculated as (Soulsby 1997)

$$\tau_{b,\max} = \sqrt{\left(\tau_b + \tau_w \cos\varphi\right)^2 + \left(\tau_w \sin\varphi\right)^2}$$
(2-89)

where τ_b is the mean shear stress by waves and current over a wave cycle, τ_w is the mean wave bed shear stress, and φ is the angle between the waves and current.

The mean wave bed shear stress is calculated as

$$\tau_w = \frac{1}{2}\rho f_w u_w^2 \tag{2-90}$$

where f_w is a wave friction factor, and u_w is the peak bottom wave orbital velocity calculated based on the linear wave theory. The wave friction factor is calculated with the expression by Nielson (1992)

$$f_w = \exp\left(5.5r^{-0.2} - 6.3\right) \tag{2-91}$$

where *r* is the relative roughness defined as $r = A_w / k_{sg}$. Here, A_w is the semi-orbital excursion defined as $A_w = u_w T / (2\pi)$.

Hiding and Exposure

In the case of the van Rijn, Soulsby and Watanabe transport formulas, the hiding and exposure mechanism is considered by correcting the critical velocity using a hiding and exposure correction function, ξ_k . In the case of the Lund-CIRP transport formula, an alternate approach is needed due to the way in which the Shields number and grain size are included in the formulation; thus, the hiding and exposure correction function is directly used to multiply the transport rate. Two methods are used for calculating ξ_k , depending on whether the sediment transport model is run with a single sediment size or multiple sediment sizes.

Single-sized sediment transport

In many cases on the coast the bed material is dominated by a single sediment size with patches of other sediment sizes or materials (e.g. shell hash), which do not contribute significantly to morphology change at specific regions, but do modify the sediment transport through hiding and exposure. For example, it is common for the bed material to have a bimodal distribution with a second peak corresponding to local patches of coarser material consisting mostly of shell fragments. The shell material is difficult to model numerically because it is usually poorly sorted and its hydraulic properties are still largely unknown. Sediment transport models commonly estimate excessive erosion in these areas if ignoring the hiding effect of the coarser shell material (e.g. Cayocca 2001).

In the case of single-sized sediment transport, the correction function is calculated following Parker et al. (1982) and others,

$$\xi_k = \left(\frac{d_{50}}{d_k}\right)^m \tag{2-92}$$

where *m* is an empirical coefficient between 0.5-1.0. The aforementioned sediment transport capacity equations are implemented by using the transport grain size d_k rather than the bed-material d_{50} . A single, constant transport size d_k is used, while the bed-material d_{50} varies spatially. The spatial distribution of d_{50} can be obtained from measurement data, and for simplicity is assumed constant during the simulation time. It is noted that the best hiding and exposure function may depend on the chosen transport equations and sediment characteristics. However, this method provides a simple conceptual mechanism for considering an important process in the proposed single-sized sediment transport model.

Multiple-sized sediment transport

The hiding and exposure of the each sediment size class is considered by modifying the critical shields parameter Θ_{ck} for each sediment size class based on (Wu et al. 2000)

$$\xi_k = \left(\frac{P_{ek}}{P_{hk}}\right)^{-m} \tag{2-93}$$

where *m* is an empirical coefficient between and varies for each transport formula. P_{ek} and P_{hk} are the total hidden and exposed probabilities and are calculated as

$$P_{hk} = \sum_{j=1}^{N} p_{1j} \frac{d_j}{d_k + d_j}, \qquad P_{ek} = \sum_{j=1}^{N} p_{1j} \frac{d_k}{d_k + d_j}$$
(2-94)

Horizontal Sediment Mixing Coefficient

The horizontal sediment mixing coefficient represents the combined effects of turbulent diffusion and dispersion due to nonuniform vertical profiles. In CMS it is assumed to be proportional to the turbulent eddy viscosity as

$$v_s = v_t / \sigma_s \tag{2-95}$$

where σ_s is the Schmidt number. There are many formulas to estimate the Schmidt number. However, for simplicity it is assumed to be constant in CMS and by default is equal to 1.0 but may be modified by the user.

Boundary Conditions

At the interface between wet and dry cells the sediment transport rate is set to zero. The inflow boundary condition requires given sediment concentration at the boundary. Since for most coastal applications, the actual sediment concentration is not available, the model implements the equilibrium concentration capacity (Dirichlet BC). The model also requires the size distribution of the inflow transport. For stability reasons, it is assumed that the inflow size distribution is equal to the initial size distribution of the bed at the boundary. Inflow sediment transport rates are specified either as a total sediment transport rate $Q_{sed,k}$ for each sediment size class, also in kg/s. If only the total sediment transport rate is specified, the fractional sediment transport rate is calculated as $Q_{sed,k} = p_{bk}Q_{sed,tot}$ where p_{bk} is bed material fraction at the boundary. The fractional sediment transport $q_{tk,B}$ at boundary cell *B* in kg/m/s is then calculated along the cell string according to

$$q_{tk,B} = \frac{q_{tk,B}^{*}}{\sum \Delta l_{f} q_{tk,N}^{*}} Q_{sed,k}$$
(2-96)

where $q_{tk,B}^*$ is the potential sediment transport rate at boundary cell *B*, and Δl_f is the inflow cell face width. If the flow is directly outwards of the do-

main, a zero-gradient BC is used for sediment concentration (Neumann BC).

Salinity Transport

Transport Equation

The CMS calculates the salinity field based on the following 2D salinity conservation equation

$$\frac{\partial \left(hC_{sal}\right)}{\partial t} + \frac{\partial \left(hV_{j}C_{sal}\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[v_{sal}h\frac{\partial C_{sal}}{\partial x_{j}} \right] + S_{sal}$$
(2-97)

where C_{sal} is depth-averaged salinity; h is total water depth, U is the depth-averaged current velocity, v_{sal} is the horizontal mixing coefficient, and S_{sal} is source term due to precipitation, evaporation and structures (e.g. culverts). Equation (32) represents the horizontal fluxes of salt in water bodies and is balanced by exchanges of salt via diffusive fluxes. Major processes contributing to the salinity are freshwater inflows from rivers, vertical fluxes of freshwater by precipitation and evaporation at the water surface, and groundwater fluxes, which can be specified as the surface and bottom boundary conditions in the equation.

Boundary Conditions

The boundary condition (BC) for the salinity transport equation is dependent on the flow direction. At cell faces between wet and dry cells, a zero-flux BC is applied. The cell face velocity U_f is zero between wet and dry cells which eliminates the advection transport. In addition, the salinity horizontal mixing coefficient at the cell face $\overline{V}_{sal,f}$ is set to zero which eliminates the diffusive flux. If the flow is directed inward of the modeling domain, then a user specified salinity concentration is specified (Direchlet BC) series is specified. If the flow is directed outwards, then a zero-gradient BC is applied (Neumann BC).

Surface Roller

As a wave transitions from nonbreaking to fully breaking, part of the energy is converted into momentum which goes into the aerated region of water known as the surface roller. Under the assumption that the surface roller moves in the mean wave direction, the evolution and dissipation of the surface roller energy is calculated by an energy balance equation (Stive and De Vriend 1994, Ruessink et al. 2001)

$$\frac{\partial (2E_{sr}cw_j)}{\partial x_j} = -D_{sr} + f_e D_{br}$$
(2-98)

where E_{sr} is the surface roller energy density, c is the roller propagation speed, $w_j = (\cos \theta_m, \sin \theta_m)$ is the wave unit vector, θ_m is the mean wave direction, D_{sr} is the roller dissipation, and D_{br} is the wave breaking dissipation. The roller speed is calculated using the longwave approximation $c = \sqrt{gh}$, where h is the total water depth. The roller dissipation is approximated as

$$D_{sr} = \frac{2gE_{sr}\beta_D}{c}$$
(2-99)

where β_D is a roller dissipation coefficient approximately equal to 0.05-0.1. The units of the roller dissipation are N/m/s. The roller contribution to the wave radiation stresses, R_{ii} , is given by

$$R_{ij} = 2E_{sr}w_iw_j \tag{2-100}$$

3 Numerical Methods

Overview

CMS-Flow has both implicit and explicit solution schemes. The explicit solver is designed for dynamic problems with extensive wetting and drying which require small computational time steps, while the implicit solver is intended for simulating tidal and wave-induced circulation at tidal inlets, navigation channels, and adjacent beaches. A detailed description of the numerical formulation of the explicit solver can be found in Buttolph et al. (2006) and is not repeated here. The sections below refer to the implicit solver.

CMS-Flow Computational Grid

The CMS-Flow implicit version uses a generic Cartesian grid which can be regular, nouniform, or locally refined by splitting a cell into four subcells. Only three requirements are imposed on the input grid:

- 1. Cells must have a rectangular shape. Irregularly shaped cells are not allowed.
- 2. Cells may have a total of four to six neighboring cells (faces).
- 3. Only two neighboring cells are allowed in the same direction (i.e. North, South, East, West).

Mesh refinement can be done by either locally decreasing the grid spacing (nonuniform Cartesian grid) as shown on the left panel of Figure 3-1 or by subdividing or splitting a cell into multiple cells as shown on the right panel of Figure 3-1. The refined mesh can be further split in multiple levels, if needed. It is referred to here as telescoping or quadtree mesh.

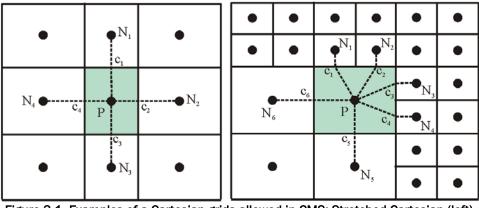


Figure 3-1. Examples of a Cartesian grids allowed in CMS: Stretched Cartesian (left) and telescoping grid (right)

An important aspect of incompressible flow models is the location of primary variables: velocity and pressure (water level). On a staggered grid, the pressure is located at the center of cells and the *u*- and *v*-velocities are on the faces of cells (Harlow and Welsh, 1965; Patankar, 1980). On the non-staggered grid, all the primary variables are located at the center of cells. The staggered grid can more conveniently eliminate the checkerboard oscillations than the non-staggered grid, but the non-staggered grid results in a simpler computer code and can minimize the number of coefficients that must be computed and stored because many of the terms in each of the equations are essentially identical. In particular, the staggered grid is more complicated in handling the interface between coarse and fine cells where five- or six-face control volumes are used. Therefore, the nonstaggered (collocated) grid approach is adopted here, with the Rhie and Chow's (1983) momentum interpolation technique used to eliminate the checkerboard oscillations. Figure 3-1 shows the location of primary variables and the 5- and 7-point stencils (computational molecule) used in the calculations.

The data structure for the grid can be managed in several ways: blockstructured, hierarchical tree, and unstructured. The block-structured approach divides the domain into multiple blocks, each of which is treated as structured. A special treatment is applied between blocks to ensure mass and momentum balance. The tree data structure is memory intensive, requiring parent-child relationships and a tree traverse to determine the mesh connectivity. In the unstructured approach, all cells are numbered in a one-dimensional sequence, and tables are used to determine the connectivity of neighboring cells. Among the three approaches, the unstructured approach is simpler and thus is used in this study. Computational cells are numbered in an unstructured manner via a 1-D index array. Inactive cells (permanently dry) are not included in the 1-D index array to save memory and computational time. All active computational nodes are numbered sequentially. For convenience in handling boundary conditions, each boundary cell has a neighboring ghost or dummy cell outside of the computational domain. Each dummy cell corresponds to a boundary face of the boundary cell. The ghost cells are stored in the end of the 1-D index array.

General Transport Equation

In order to avoid redundant and repetitive derivations of discretized equations, discretization of a general transport equation is outlined and described below. Since all the governing equations are some form of a transport equation, the same discretization may be applied to all of the equations. The general transport equation is given by

$$\frac{\partial(h\phi)}{\partial t} + \frac{\partial(hU_{j}\phi)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\Gamma h \frac{\partial\phi}{\partial x_{j}}\right) + \frac{S_{\phi}}{Source Term}$$
(3-1)

where ϕ is a general scalar, t is time, h is the total water depth, U_j is the depth averaged current velocity, Γ is the diffusion coefficient for ϕ , and S_{ϕ} includes all remaining terms. Note that in the case of the continuity and momentum equations, ϕ is equal to 1 and U_i , respectively.

Spatial Discretization

The CMS uses a control-volume technique in which the governing equations are integrated over each control volume to obtain an algebraic equation that can be solved numerically. Integration of Eq. (147) over a contral volume shown in Figure 10 and application of the Green theorem yields:

$$\int_{A} \frac{\partial (h\phi)}{\partial t} dA + \oint_{L} h \Big[(\hat{n}_{i} U_{i}) \phi - \Gamma (\hat{n}_{i} \nabla_{i} \phi) \Big] dL = \int_{A} S_{\phi} dA$$
(3-2)

$$\frac{\partial (h_{P}\phi_{P})}{\partial t}\Delta A_{P} + \sum_{f}\Delta l_{f}h_{f}\left[U_{f}\phi_{f} - \Gamma_{f}\left(\nabla_{\perp}\phi\right)_{f}\right] = S_{\phi}\Delta A_{P}$$
(3-3)

where $\hat{n}_i = (\hat{n}_1, \hat{n}_2)$ is the outward unit vector normal to cell face f, $U_f = (n_i U_i)_f$ is the outward cell face velocity, ϕ_f is the advective value of ϕ on cell face f, \overline{h}_f is the linearly interpolated total water depth at the cell face f, and $(\nabla_{\perp}\phi)_f = (\hat{n}_i \nabla_i \phi)_f$ is the outward normal gradient of ϕ at cell face f. The overbar indicates a cell face linear interpolation operator described in a subsequent section. The cell face velocity U_f is calculated using a momentum interpolation method similar to that of Rhie and Chow (1983) and described in a subsequent section.

Temporal Discretization

The transport equation is rewritten as

$$\int \frac{\partial (h\phi)}{\partial t} dt = \int \mathbf{F} \ dt \tag{3-4}$$

where F includes all the remaining terms. For stability and efficiency a fully implicit time stepping scheme is used

$$\frac{(1+0.5\theta)h^{n+1}\phi^{n+1} - (1+\theta)h^n\phi^n + 0.5\theta h^{n-1}\phi^{n-1}}{\Delta t} = \mathbf{F}^{n+1}$$
(3-5)

where θ is a weighting factor between 0 and 1. When $\theta = 0$, the scheme is equal to the first-order backward Euler scheme, and when $\theta = 1$, the scheme is equal to the second-order backward scheme (Ferziger and Peric 1997). The superscripts indicate the time step level where n+1 is the current time step.

Cell-face interpolation operator

The general formula for estimating the cell-face value of $\hat{\phi}_{f}$ is given by

$$\hat{\phi}_{f} = f_{\perp}\phi_{N} + (1 - f_{\perp})\phi_{P} + f_{\perp}\left(r_{\parallel}\nabla_{\parallel}\phi\right)_{N} + (1 - f_{\perp})\left(r_{\parallel}\nabla_{\parallel}\phi\right)_{P}$$
(3-6)

where f_{\perp} is a linear interpolation factor, ∇_{\parallel} is the gradient operator in the direction parallel to face *f*, and r_{\parallel} is the distance from the cell center to the ghost point O parallel to the cell face *f* (see Figure 3-2).

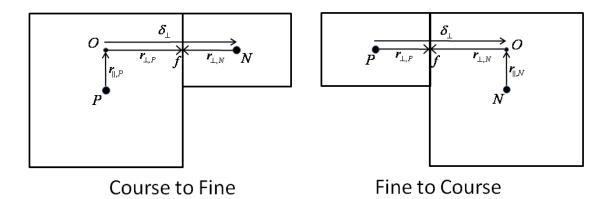


Figure 3-2. Schematic showing two types of refined cells.

Note that for neighboring cells without any refinement r_{\parallel} is equal to zero and thus the above equation is consistent with non-refined cell faces.

The linear interpolation factor is defined as

$$f_{\perp} = \frac{x_{\perp,f} - x_{\perp,P}}{x_{\perp,N} - x_{\perp,P}} = \frac{\Delta x_{\perp,P}}{\Delta x_{\perp,P} + \Delta x_{\perp,N}}$$
(3-7)

where $x_{\perp,f}$ is the coordinate of *f* perpendicular to the face.

Advection Schemes

Hybrid Scheme

The hybrid scheme is a composed of the first-order upwind scheme and the second-order central difference scheme. When the Peclet number is larger than 2, the first-order upwind scheme is used; otherwise the central difference scheme is used:

$$\phi_{f} = \begin{cases} \left(\phi_{D} + \phi_{C}\right)/2 & \text{for } \left|P_{f}\right| < 2 \\ \phi_{C} & \text{for } \left|P_{f}\right| > 2 \end{cases}$$
(3-8)

where the subscripts D and C indicate the downstream and first upstream nodes and $P_f = U_f |\delta_{\perp}| / \overline{\Gamma}_f$ is the Peclet number at the cell face in which $|\delta_{\perp}| = |x_{\perp,N} - x_{\perp,P}|$.

Exponential Scheme

The exponential scheme interpolates the face value using an exact solution to the 1-D steady advection-diffusion equation:

$$\frac{\phi_f - \phi_0}{\phi_L - \phi_0} = \frac{\exp\left(P_f x_f / \left|\delta_{\perp}\right|\right) - 1}{\exp\left(P_f\right) - 1}$$
(3-9)

where $\phi_0 = \phi |_{x=0}$, $\phi_L = \phi |_{x=L}$. The exponential scheme has automatic upwinding and is stable but is usually less than second order.

Hybrid Linear/Parabolic Scheme

The Hybrid Linear/Parabolic Approximation (HLPA) scheme of Zhu (1991) may be written as

$$\phi_f = \begin{cases} \phi_C + (\phi_D - \phi_C) \hat{\phi}_C & \text{for } 0 \le \hat{\phi}_C \le 1 \\ \phi_C & \text{otherwise} \end{cases}$$
(3-10)

where the subscripts D, C and U indicates the downstream and first and second upstream cells, respectively. The normalized variable $\hat{\phi}_C$ is determined based on the formulation of Jasak et al. (1999)

$$\hat{\phi}_{C} = \frac{\phi_{C} - \phi_{U}}{\phi_{D} - \phi_{U}} = 1 - \frac{\phi_{D} - \phi_{C}}{2(\nabla_{\perp}\phi)_{C} \delta_{\perp,C}}$$
(3-11)

where $\delta_{\perp,C} = x_{\perp,D} - x_{\perp,C}$. The HLPA scheme is second order.

Cell-face gradient operator

A linearly exact, second-order approximation for the normal gradient at cell face *f* is calculated using the auxiliary node concept of Ferziger and Peric (1997)

$$\left(\nabla_{\perp}\phi\right)_{f} = \frac{\phi_{N} - \phi_{P} + \left(r_{\parallel}\nabla_{\parallel}\phi\right)_{N} - \left(r_{\parallel}\nabla_{\parallel}\phi\right)_{P}}{\left|\delta_{\perp}\right|}$$
(3-12)

where the subscripts *P* and *N* refer to two neighboring cells, $|\delta_{\perp}| = |x_{\perp,N} - x_{\perp,P}|$ is the distance between cells P and N, normal to the cell face (see Figure 3-2), and ∇_{\parallel} is the gradient operator in the direction parallel to face *f*.

Ham et al. (2002) compared the auxiliary node formulation to the fully unstructured discretization proposed by Zwart et al. (1998) for the viscous terms and found that the auxiliary node formulation is significantly more stable.

Cell-centered gradient operator

The cell-centered gradient operator is calculated using the Green-Gauss theorem as

$$\int_{A} \nabla_{i} \phi \mathrm{d}A = \sum_{f} \hat{n}_{\perp} \Delta l_{f} \overline{\phi}_{f}$$
(3-13)

The above expression is second order and conservative for regular and non-uniform grids.

Source/sink term

The source/sink term is

$$\int_{A} S dA = \left(S^{C} + S^{P} \phi \right) \Delta A_{P}$$
(3-14)

where ΔA_p is the cell area, and $S = S^C + S^P \phi$ is approximated as the cell average source/sink term. The coefficient S^p is required to be non-positive for stability.

Assembly of Algebraic Equations

Assembly refers to the process of combining all terms to create a linear algebraic equation for each cell.First the above terms are combined. The continuity equation is multiplied by ϕ_p^{n+1} and is subtracted from the transport equation. The resulting discretized equation for cell P may be written as

$$a_P \phi_P^{n+1} = \sum_N a_N \phi_N^{n+1} + b_\phi$$
(3-15)

where the subscript N refers to the neighboring cell sharing cell face, a_p and a_N are linear coefficients for ϕ_p^{n+1} and ϕ_N^{n+1} . The last term b_{ϕ} contains all the remaining terms. Applying a similar equation on all internal cells of the grid results in a system of algebraic equations that are the discretized governing equations.

Implicit Relaxation

Under-relaxation is used to stabilize the convergence of the outer nonlinear iteration loop by introducing a relaxation parameter in the discretized equations as (Patankar 1980)

$$\frac{a_{P}}{\alpha_{\phi}}\phi_{P}^{n+1} = \sum_{N} a_{N}\phi_{N}^{n+1} + b_{\phi} + \frac{1-\alpha_{\phi}}{\alpha_{\phi}}a_{P}\phi_{P}^{m}$$
(3-16)

where α_{ϕ} is an under-relaxation parameter, ϕ^m is the value of ϕ from the previous iteration. The under-relaxation has the effect of making the coefficient matrix more diagonally dominant.

Iterative Solvers

The selection of the iterative solution solver is a key issue concerning the overall performance of the model. The CMS has several iteration solvers available: GMRES, BiCGStab, and Gauss-Seidel. The default solver is a variant of the GMRES (Generalized Minimum Residual) method (Saad, 1993) to solve the algebraic equations. The original GMRES method (Saad and Schultz, 1986) uses the Arnoldi process to reduce the coefficient matrix to the Hessenburg form and minimizes at every step the norm of the residual vector over a Krylov subspace. The variant of the GMRES method recommended by Saad (1993) allows changes in the preconditioning at every iteration step. An ILUT (Incomplete LU Factorization; Saad, 1994) is used as the preconditioner to speed up the convergence. The GMRES solver is applicable to symmetric and non-symmetric matrices and leads to the smallest residual for a fixed number of iterations. However, the memory requirements and computational costs become increasingly expensive for large systems.

The BiCGStab (BiConjugate Gradient Stabilized) is also a Krylove subspace solver and is applicable to symmetric and non-symmetrix matrices (Saad 1996). BiCGStab also uses ILUT as a preconditioner Saad (1994). The BiCGStab can be viewed as a combination of the standard Biconjugate Gradient solver where every step is followed by a restarted GMRES step. One advantage of the BiCGStab solver is that the memory requirements remain the same for each iteration and are less compared to the GMRES (for GMRES restart numbers larger than 4). For large problems BiCGStab scales better than the GMRES.

The simplest solver implemented is the point-implict Gauss-Seidel solver which can be applied in CMS without or with Succesive-Over-Relaxation to speed up convergence (Patankar 1980). Unlike the GMRES and BiCGStab, the Gauss-Seidel method can be highly parallelized. Even though the Gauss-Seidel method requires more iterations to converge, the overall efficiency can be higher than the GMRES and BiCGStab, because each iteration is so inexpensive and the code is parallelized. However, the GMRES and BiCGStab are more robust and perform better for large time steps.

Convergence and Time Stepping

During the iterative solution process, the error is monitored and used to decide when the solution has converged, diverged, or stalled at an error below a certain tolerance limit. There are many ways of monitoring the solution error. An estimate of the error in solving the general algebraic equation is given by

$$r_{P} = \frac{1}{a_{P}} \left(\sum_{N} a_{N} \phi_{N}^{n+1} - a_{P} \phi_{P}^{n+1} + b_{\phi} \right)$$
(3-17)

Many statistics can be estimated from the normalized errors. For example, the *P*-norm is given by

$$\left\|r\right\|_{2} = \sqrt{\sum_{cells\,P} r_{P}^{2}} \tag{3-18}$$

However, since this value depends on the problem size, the final statistic (residual) used for estimating the model convergence is obtained by dividing the normby the problem size as

$$R^{m} = \frac{\|r\|_{2}}{\sqrt{N_{c}}}$$
(3-19)

Here R^m is referred to as the normalized residual error and the superscript refers to the iteration number. R^m is calculated for each variable being solved, at every iteration of the solution process. Each equation has default maximum tolerances for determining if the solution has converged, diverged, or stalled. Table 3-1 lists the default tolerances for determining if the model has converged. The maximum number of iterations is imposed equal to M. A minimum of 5 iterations is required for the hydrodynamic equations and a minimum of M/2 for the sediment transport equations. Table 3-1 shows the default criteria for determining whether the iterative solution procedure has converged, diverged, or needs the time step reduced.

Variable	Converged	Diverged	Reduce Time Step
Current velocity,	If R ^m <1x10 ⁻⁷	<i>If R</i> ^M >1.0x10 ⁻²	If R ^M >1.0x10 ⁻³
m/s	or R ^m -R ^{m-2} <1x10 ⁻⁷	or <i>U</i> _i >10	
Pressure-	If R ^m <1x10 ⁻⁸	<i>If R</i> ^M >1.0x10 ⁻³	If R ^M >1.0x10 ⁻⁴
correction, m ² /s ²	or R ^m -R ^{m-2} <1x10 ⁻⁸	or <i>p</i> >50	
Total-load con-	If R ^m <1x10 ⁻⁸	If R ^M >1.0x10 ⁻³	None
centration, kg/m ³	or R ^m -R ^{m-2} <1x10 ⁻⁸	or C _{tk} <0	
Salinity, ppt	If R ^m <1x10 ⁻⁶	If S<0	None

 Table 3-1. Default criteria for determining whether the iterative solution procedure has converged, diverged, or needs the time step reduced.

It is noted that for the implicit model, the time steps for the hydrodynamics, sediment and salinity transport are the same. This is done in order to avoid mass conservation problems and for simplicity. If any of the time step reduction criteria are met, the time step is reduced by half and a minimum number of 3 time steps are calculated at the reduced time step and then the time step is increased if the last time step converged properly. The maximum time step allowed is equal to the initial time step userspecified.

Ramp Period

For most coastal applications, the model is is initialized from a "Cold Start", which the water level and current velocities are set to zero. The ramp period is used to allow the model to slowly transition from the initial condition without "shocking" the system. In CMS, the ramp function is defined as

$$f_{Ramp} = \frac{1}{2} - \frac{1}{2} \cos \left[\pi \min \left(t / t_{Ramp}, 1 \right) \right]$$
(3-20)

where t is the simulation time, and t_{Ramp} is the ramp duration. The ramp function provides a smooth function for transitioning from the initial conditionis, as plotted in Figure 3-3.

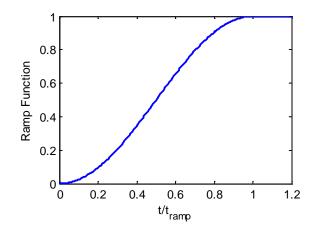


Figure 3-3. Ramp function used in CMS.

The ramp function is applied to the mode forcing including the wave forcing τ_i^w , surface wind τ_i^s , sediment concentration capacity C_{tk*} , and the significant wave height H_s by directly multiplying them by the ramp function at each time step. Since boundary conditions in CMS are specified without consideration of this transition or rampup period, boundary conditions are alos slowly transitioning from the initial condition.

Hydrodynamics

Solution Procedure

The governing equations are solved in a segregated manner in which each governing equation is solved separated with the latest values from the other equations until a converged solution is obtained. The coupling between the velocity (momentum eq.) and water level (continuity eq.) is achieved using the SIMPLEC algorithm (van Doormal and Raithby 1984). The main difficulty in solving the momentum equations is that the water level is not known a priori and must be calculated as part of the solution. Given an initial or estimated water level, the corresponding velocity is therefore given by

$$\frac{\partial(hV_i^*)}{\partial t} + \frac{\partial(hV_j^*V_i^*)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(v_t h \frac{\partial V_i^*}{\partial x_j} \right) - \frac{h}{\rho} \frac{\partial p^*}{\partial x_i} + S_i^*$$
(3-21)

where $p^* = \rho g \overline{\eta}^*$ and S_i^* includes all the remaining terms. Next, velocity U' and pressure corrections p' are defined such that both the momentum and continuity equations are satisfied:

$$V_i^{n+1} = V_i^* + V_i'$$
 $p^{n+1} = p^* + p'$ (3-22a,b)

Subtracting the guessed velocity equation from the momentum equation leads to velocity correction equation:

$$\frac{\partial(hV_i')}{\partial t} + \frac{\partial(hV_i'V_j')}{\partial x_j} = \frac{\partial}{\partial x_j} \left(v_t h \frac{\partial V_i'}{\partial x_j} \right) - \frac{h}{\rho} \frac{\partial p'}{\partial x_i}$$
(3-23)

or written in the descritized form:

$$a_p U'_{i,P} = \sum a_N U'_{i,N} - \frac{h}{\rho} \nabla_i p'_P \Delta A_P$$
(3-24)

In the SIMPLEC algorithm, the velocity correction is assumed to vary smoothly so that $\sum a_N U'_{i,N}$ may be approximated as $U'_{i,P} \sum a_N$, which leads to the velocity correction equation:

$$U_i' = -G\nabla_i p' \tag{3-25}$$

where $G = \frac{h \Delta A_p / \rho}{a_p - \sum a_N}$.

Using $\partial h / \partial t = \partial p / (\rho g \partial t)$ and substituting $V_i^{n+1} = V_i^* + V_i'$ in the continuity equation yields the water level correction equation:

$$\frac{(1+0.5\theta)(p^*+p')-(1+\theta)p^n+0.5\theta p^{n-1}}{\rho g \Delta t} = \frac{\partial}{\partial x_j} \left(hG\frac{\partial p'}{\partial x_j}\right) - \frac{\partial \left(hV_j^*\right)}{\partial x_j}$$
(3-26)

Note that at convergence p' = 0 and the above equation reduces to the continuity equation. Once the pressure correction equation solved, the cell centered water levels and current velocities are corrected using Equation (168). The cell face velocities are also corrected as $V_f^{n+1} = V_f^* + V_f'$ in which the velocity correction is given by $V_f' = -G_f (\nabla_{\perp} p')_f$.

Summary of SIMPLEC Algorithm

- **1.** Guess the water level and pressure field p^*
- **2.** Solve the momentum equations to obtain U_i^*
- 3. Use the Rhie and Chow's momentum to determine the velocities and fluxes at cell faces
- 4. Solver the pressure equation to obtain *p*'
- 5. Correct velocities and water levels
- 6. Treat the corrected water pressure, as a new guess, and repeat the procedure from step 2 until convergence.

Cell-face Velocity

The Rhie and Chow (1983) type method is used to estimate the inter-cell current velocities as

$$V_{f}^{*} = \left(\overline{H_{\perp}^{*}}\right)_{f} - \left(\overline{\frac{\Delta A_{p}}{a_{p}}}\right)_{f} \left(\frac{h}{\rho} \nabla_{\perp} p^{*}\right)_{f}$$
(3-27)

where $\overline{\left(H_{\perp}^{*}\right)}_{f} = V_{\perp}^{*} + \frac{\Delta A_{P}}{a_{P}} \frac{h}{\rho} \nabla_{\perp} p^{*}$. It is noted that this approach is slightly dif-

ferent from Lai (2010) and others and was found to be significantly more stable.

Wetting and Drying

In the numerical simulation of the surface water flows with sloped beaches, sand bars and islands, the water edges change with time, with part of the nodes being possibly wet or dry. In the present model, a threshold flow depth (a small value such as 0.02 m in field cases) is used to judge drying and wetting. If the flow depth at the cell center is larger than the threshold value, this node is considered to be wet, and if the flow depth is lower than the threshold value, this node is dry. For the implicit solver all the wet and dry cells are included in the matrix solver. Dry cells are assigned a zero velocity. Cell faces are classified as either *open* if the two cells neighboring cells are wet or *closed* otherwise (i.e. cell faces are not classified as wet or dry).

Sediment Transport

Transport Equations

The sediment transport equations are descritized using the methods described in the <u>General Transport Equation</u> section and are not repeated here.

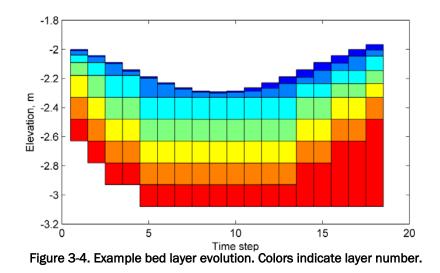
Mixing Layer

The mixing or active layer thickness calculation is slightly modified to avoid excessively small layers and for cases of strong deposition as

$$\delta_1 = \max(\Delta/2, 2d_{50}, \delta_{m,\min}, \Delta\zeta + \delta_{m,\min})$$
(3-28)

where Δ is the bed form height, and $\delta_{m,\min}$ is a user specified the minimum mixing layer thickness.

Bed Material Sorting


The bed material sorting equation (50) is discretized as

$$\delta_1^{n+1} p_{1k}^{n+1} = \Delta z_{bk} + \delta_1^n p_{1k}^n + \Delta z_2 p_k^{*n}$$
(3-29)

where $\Delta z_2 = \delta_1^{n+1} - \delta_1^n - \Delta z_1$, is the change in the top elevation of the second bed layer, and $p_k^{*n} = p_{1k}^n$ for $\Delta z_2 \ge 0$ and $p_k^{*n} = p_{2k}^n$ for $\Delta z_2 < 0$. The bed material gradation in the second layer is calculated from the following discretized form of Eq. (51):

$$\delta_2^{n+1} p_{2k}^{n+1} = \delta_2^n p_{2k}^n - \Delta z_2 p_k^{*n}$$
(3-30)

In order to avoid sediment layers from becoming extremely thin or thick, a layer merging and splitting algorithm is implemented between layers 2 and 3. Here, the subscript s corresponds to the second layer. To illustrate the bed layering process, Figure 3-4 shows an example of the temporal evolution of 7 bed layers during erosional and depositional regimes.

Avalanching

When the slope of a non-cohesive bed ϕ_b is larger than the angle of repose ϕ_R , the bed material will slide (avalanche) to form a new slope approximately equal to the angle of repose. The process of avalanching is simulated by enforcing $|\phi_b| \leq \phi_R$, while maintaining mass continuity between adjacent cells. The following equation for bed change due to avalanching is obtained by combining the equation of angle of repose and the continuity equation between two adjacent cells:

$$\Delta z_{b,p}^{a} = -\alpha_{a} \sum_{N} \frac{\Delta A_{N} \left| \delta_{N} \right|}{\Delta A_{P} + \Delta A_{N}} \left(\tan \phi_{b} - \operatorname{sgn} \phi_{b} \tan \phi_{R} \right) H \left(\left| \phi_{b} \right| - \phi_{R} \right)$$
(3-31)

where δ_N is the cell center distance between cells P and N, ΔA is the cell area, α_a is an under-relaxation factor (approximately 0.25-0.5), and H(X) is the Heaviside step function representing the activation of avalanching and equal to 1 for $X \ge 0$ and 0 for X < 0. The sign function sgn X is equal to 1 for $X \ge 0$ and -1 for X < 0 and accounts for the fact that the bed slope may have a negative or positive sign. The equation above is applied by sweeping through all computational cells to calculate Δz_b^a and then modifying the bathymetry as $z_b^{m+1} = z_b^m + \Delta z_b^a$. Because avalanching between two cells may induce new avalanching at neighboring cells, the above sweeping process is repeated until no avalanching occurs. The under-relaxation coefficient α_a is used to stabilize the avalanching process and avoid overshooting since the equation is derived considering only two adjacent cells but is summed over all (avalanching) neighboring cells. The equation

above may be applied to any grid geometry type (i.e. triangles, rectangles, etc.), and also in situations where neighboring cells are joined at corners without sharing a cell face.

Hard bottom

The sediment transport and bed change equations assume a loose bottom in which the bed material is available for entrainment. Sometimes one may encounter hard bottoms where bed materials are nonerodible, such as bare rocks, carbonate reefs, and concrete structures. The hard-bottom cells are treated simply by modifying the equilibrium concentration as $C'_{t^*} = \min(C_{t^*}, C_t)$ in both the sedment transport and bed change equations. The bed-slope term in the bed change equation is also modified, so that only deposition occurs at hard-bottom cells.

Semi-Coupling Procedure

In a semi-coupled sediment transport model, the sediment calculations are decoupled from the hydrodynamics but the sediment transport, bed change and bed material sorting equations are coupled at the time step level and thus solved simultaneously. Here a modified form of the iteration procedure of Wu (2004) is implemented. The equations are obtained by substituting $C_{l^*k}^{n+1} = p_{1k}^{n+1}C_{lk}^{*n+1}$ into the bed change and sorting equations and then substituting the sorting equation into the bed change equation.

The solution procedure of sediment transport is as follows:

- 1. Calculate boundary layer variables and bed form roughness
- 2. Estimate the potential sediment concentration capacity C_{ik}^{*n+1}
- **3.** Guess the new bed composition as $p_{bk}^{n+1} = p_{bk}^{n}$
- 4. Calculate the fractional concentration capacity $C_{t^{*k}}^{n+1} = p_{bk}^{n+1}C_{t^{*k}}^{n+1}$
- 5. Solve transport equations for each sediment size class.
- 6. Estimate the mixing layer thickness.
- 7. Calculate the total and fractional bed changes.
- 8. Determine the bed sorting in the mixing layer.
- 9. Update the bed elevation.
- 10. Go back to step 4 and iterate until convergence.
- 11. Calculate the bed gradation in the bed layers below the mixing layer
- 12. Calculate avalanching
- 13. Correct the sediment concentration due to flow depth change $C_{tk}^{n+1} = (h \Delta z_b) C_{tk}^{n+1} / h$

Surface Roller

The surface roller equation (107) is solved on the CMS-Wave grid using a finite difference method. The source terms are calculated at the cell centers. The advective or transport term is approximated using either the first order or second order upwind finite difference scheme. The first order scheme is given by

$$\frac{\partial(S_{sr}c_{j})}{\partial x_{j}}\bigg|_{i} = \begin{cases} \frac{\left(S_{sr}c_{j}\right)_{i} - \left(S_{sr}c_{j}\right)_{i-1}}{\delta x_{j,i-1}}, \text{ for } c_{j,i} > 0\\ \frac{\left(S_{sr}c_{j}\right)_{i+1} - \left(S_{sr}c_{j}\right)_{i}}{\delta x_{j,i}}, \text{ for } c_{j,i} < 0 \end{cases}$$
(3-32)

where *i* indicates the position along either the rows or columns, and $\delta x_{j,i}$ is the cell-center distance between adjacent cells in the *f*th direction and at position *i*.

The second-order upwind scheme is given by

$$\frac{\partial(S_{sr}c_{j})}{\partial x_{j}}\Big|_{i} = \begin{cases} \frac{3(S_{sr}c_{j})_{i} - 4(S_{sr}c_{j})_{i-1} + (S_{sr}c_{j})_{i-2}}{\delta x_{j,i} + \delta x_{j,i-1}}, \text{ for } c_{j,i} > 0\\ \frac{-3(S_{sr}c_{j})_{i} + 4(S_{sr}c_{j})_{i+1} - (S_{sr}c_{j})_{i+2}}{\delta x_{j,i} + \delta x_{j,i+1}}, \text{ for } c_{j,i} < 0 \end{cases}$$
(3-33)

The calculation is performed by setting the initial roller energy and time stepping until the steady-state solution is reached. For simplicity, an explicit Euler scheme is used as follows

$$\left(S_{sr}\right)^{n+1} = \left(S_{sr}\right)^{n} + \Delta t_{sr} \left(-D_{r} + f_{e}D_{br} - \frac{\partial(S_{sr}c_{j})}{\partial x_{j}}\right)^{n}$$
(3-34)

where Δt_{sr} is the surface roller time step and is determined as $\Delta t_{sr} = 0.5 \max (\Delta x_j / c)$, where Δx_j is the cell size in the *J*th direction. The steady-state solution is usually reached after about 40-80 time steps and takes about 1-2 seconds to run on a desk-top PC.

Coupling Procedure of CMS-Flow and CMS-Wave

CMS-Flow and CMS-Wave can be run separately or coupled together using a process called steering (Figure 3-5). The variables passed from CMS-Wave to CMS-Flow are the significant wave height, peak wave period, wave direction, wave breaking dissipation, and radiation stress gradients. CMS-Wave uses the updated bathymetry (if sediment transport is on), water levels, and current velocities from CMS-Flow. The time interval at which CMS-Wave is run is called the steering interval. Currently in CMS the steering interval is constant and the input spectra in CMS-Wave must be at constant intervals without any gaps.

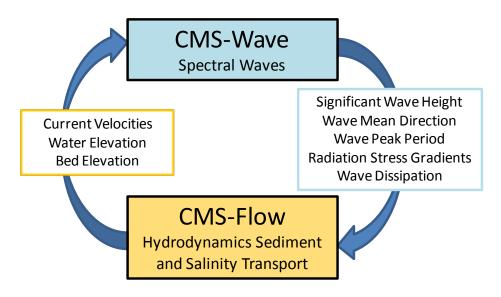


Figure 3-5. CMS coupling process between CMS-Flow and CMS-Wave.

In CMS versions less than 4.0, the steering process is controlled in the SMS interface using communication files because the CMS-Wave and CMS-Flo models are separate executables. In CMS v4.0 and above, both CMS-Flow and CMS-Wave are contained within a single executable (inline) and the steering process is controlled by an interval steering module. The advantages of the inline steering are that the model runs faster because there is no need to use communication files or reinitialize the models (memory allocation, variable initialization, etc.), makes the improvement and maintenance of the steering module easier for the developers, and also makes the code more portable to other operating systems. The inline steering process is as follows:

- 1. CMS-Wave model is run the first two time steps and the wave information is passed to CMS-Flow (Figure 3-6). If specified, the surface roller model is run on the wave grid and the roller contributions to the radiation stresses are added to the wave radiation stresses.
- 2. The wave height, period, dissipation, radiation stress gradients, and wave unit vectors are interpolated spatially from the wave grid to the flow grid.
- 3. CMS-Flow is run until the next steering interval and wave variables are linearly interpolated in time during the steering interval. At each flow time step, variables such as wave length and bottom orbital velocities are updated for wave-current interaction.
- 4. Water levels, current velocities and bed elevations are estimated for the next wave time step and are interpolated from the flow grid to the wave grid.
- 5. CMS-Wave is run again for the next time step.
- 6. Step 2-7 are repeated until the end of the simulation.



Figure 3-6. Schematic of steering process.

Spatial Interpolation and Extrapolation

CMS allows the user to use the same or different grids for CMS-Flow and CMS-Wave. If the same grid is used, then no spatial interpolation is carried out. If different grids are used, then spatial interpolation is needed for passing information from one model grid to another. The interpolation of wave variables from the CMS-Wave grid to the CMS-Flow grid is done using a combination of bilinear and linear triangular interpolation methods. Bilinear interpolation is applied at non-jointed cells where 4 neighboring points can be identified and triangular interpolation at jointed cells. If the extents of the CMS-Wave and CMS-Flow grids are different (e.g. the CMS-Flow grid is smaller), the extrapolation of variables is needed in order to avoid boundary problems with the models. Different extrapolation methods are applied to different variables based on experience of what methods work best.

Water levels

Water levels are extrapolated out using a nearest neighbor interpolation over the whole domain, but not across land (dry) boundaries. This approach is more physically accurate than extrapolating only to a certain distance since water levels are mostly controlled by tides along the coast and the spatial variation is usually much smaller than the tidal range.

Current Velocities

Current velocities are extrapolated out only to a certain distance called the extrapolation distance. A nearest neighbor extrapolation is applied to cells within that distance and multiplied by a cosine function to produce a smooth transition from the boundary to a value of zero:

$$\left(U_{i,P}\right)_{\text{wave grid}}^{n+1} = \frac{1}{2} \left\{ 1 + \cos\left[\pi \min\left(\left|\vec{r}_{N}\right| / r_{x}, 1\right)\right] \right\} \left(U_{i,N}\right)_{\text{flow grid}}^{n}$$
(3-35)

where $U_{i,P}$ is the current velocity at the extrapolated cell, $U_{i,N}$ is the current velocity at the nearest neighbor, and $|\vec{r}_N|$ is the distance vector from cell P to N, and r_x is an extrapolation distance.

Bed elevations

Extrapolating bed elevations from a boundary can lead to sharp changes in bathymetry in the wave model and lead to instability problems in both the wave and flow models. A better approach is to extrapolate the bed change

$$(z_{b,P})_{\text{wavegrid}}^{n+1} = (z_{b,P})_{\text{wavegrid}}^{n} + \frac{1}{2} \{ 1 + \cos \left[\pi \min \left(\left| \vec{r}_{N} \right| / r_{x}, 1 \right) \right] \} (\Delta z_{b,N})_{\text{flow grid}}^{n}$$
(3-36)

where $z_{b,P}$ is the bed elevation the extrapolated cell, $z_{b,N}$ is the bed elevation at the nearest neighbor, and $|\vec{r}_N|$ is the distance vector from cell P to N, and r_x is in this case the flow grid extrapolation distance.

Significant Wave height

The significant wave height is extrapolated in the same way as the current velocities out to a certain distance called the extrapolation distance. A nearest neighbor extrapolation is applied to cells within that distance and multiplied by a cosine function to produce a smooth transition from the boundary to a value of zero:

$$(H_{s,P})_{\text{flow grid}}^{n+1} = \frac{1}{2} \{ 1 + \cos \left[\pi \min \left(\left| \vec{r}_N \right| / r_x, 1 \right) \right] \} (H_{s,N})_{\text{wave grid}}^n$$
 (3-37)

where $H_{s,P}$ is the significant wave height velocity at the extrapolated cell, $H_{s,N}$ is the current velocity at the nearest neighbor, and $|\vec{r}_N|$ is the distance vector from cell P to N, and r_x is in this case the flow grid extrapolation distance.

Wave Period

The wave period is extrapolated out in a similar way as the water levels using a nearest neighbor extrapolation over the whole domain, but not across land (dry) boundaries. This approach is more physically accurate than extrapolating to a finite distance will produce zero wave periods over the ocean domain which is not physically meaningful.

Wave Direction

The wave direction is first converted to wave unit vectors and these are extrapolated in space. Wave unit vectors are also extrapolated out over the whole domain except across land (dry) boundaries without consideration of an extrapolation distance. This approach leads to more physically accurate results.

Temporal Interpolation and Extrapolation

Because CMS-Wave requires the water surface elevation at times that are ahead of the hydrodynamic model, the water surface elevation and currents. If the steering is relatively small (<30 min), then the values from the previous time step may be used without significant error.

$$U_i^{n+1} = U_i^n$$
 $\eta^{n+1} = \eta^n$ $z_b^{n+1} = z_b^n$ (3-38a,b,c)

where n is the steering time step (CMS-Wave time step). However, in many coastal engineering projects it is desirable and common to use relatively large steering intervals of 2-3 hours. Over large steering intervals, the change in water depth has the largest influence on the nearshore wave heights. Therefore, when using large steering intervals, it is desirable to make a better prediction of water levels than using the previous time step. In cases where the relative surface gradients at any time are much smaller than the mean tidal elevation, a better approximation of water level may be obtained by decomposing the water level into

$$\eta^{n+1} = \overline{\eta}^{n+1} + \eta^{\prime n+1} \tag{3-39}$$

where $\overline{\eta}$ is the mean water level, and η' is a variation around the mean due to due to tidal, wave, and wind generated surface gradients. $\overline{\eta}$ can be estimated from water level boundary conditions and is generally much larger, so η' may be neglected. The surface gradient term may be approximated as

$$\eta^{\prime n+1} \approx \eta^{\prime n} = \eta^n - \overline{\eta}^n \tag{3-40}$$

For most coastal inlet applications, the above expression is a much better representation of the water surface elevation and used as the default in CMS. After spatially interpolating the wave height, period, dissipation, and forcing onto the CMS-Flow grid. The variables are linearly interpolated in time. The wave length, bottom orbital velocities, and mean wave-current bottom friction are then updated including current-wave interactions at each time step.

4 User Guide

Overview

Buttolph et al. (2006) described the graphical interface for CMS in the SMS Version 9.0 (Zundel 2006). A summary of key features of the interface is provided in this chapter to familiarize users with the CMS-Flow interface. The interface is designed to facilitate the model setup and create input files and as well as view output. The interface described here is for SMS Version 11.0.

Limitations and Recommendations

CMS is designed to model hydrodynamics and sediment transport in coastal waters. The model is depth-averaged is does not calculate the vertical profile of current velocities and suspended sediments (although assumed profiles are used for some corrections). Caution is needed when using very small cell sizes compared to the flow depth, since the assumptions of the Shallow Water Equations may be violated. A 3D model may be needed in these situations. The influence of the sub-grid scale turbulence can be particularly relevant in these situations. The implicit hydrodynamic model is capable of handling subcritical, transcritical and supercritical flow regimes but may require a very small time for transcritical and supercritical flows making the computation making the model inefficient. For flows with a high Froude number, it is recommended to use the explicit flow model. Flow through structures is handled using empirical equations.

Sediments are simulated as a passive scalar (no interaction with water) and assumed to be noncohesive, and have constant density and porosity. The hydrodynamic model has capability of including the mass transport due to waves (Stokes velocities) referred to as the undertow. This produces a net offshore current velocity in the surf zone which is consistent with field measurements. The offshore sediment transport caused by the undertow is counter acted by an onshore sediment transport due wave asymmetry, and skewness. Currently, the formulations for onshore sediment transport are still under development. Therefore, when the Stokes velocities are activated in CMS-Flow, the sediment transport is still calculated using the Lagrangian current velocities and no cross-shore sediment transport is included.

It is recommended to always turn on the Surface Roller Model. This model is very fast and represents an insignificant increase in computational costs. The results however, have been shown to significantly improved when simulating nearshore currents and water levels (Sánchez et al. 2011).

The CMS is designed to run on a desktop PC for grids with less than 500,000. The recommended maximum grid size depends on the simulation duration, time step, wave coupling, and sediment transport. But in general it is recommended to keep the total number of active cells less than 150,000 for short term simulations (weeks to months), less than 80,000 for mid-term (months-years), and less than 30,000 for long-term simulations (multiple-years). The grid resolution is therefore a compromise between accuracy and computational costs. For nearshore circulation, it is recommended to have at least 10 computational cells in the in the surf zone in the cross-shore direction. For channels a minimum of three cells is recommended perpendicular to the channel axis. For inlets it is recommended to have at least ten cells across the entrance. However, these are just rules of thumb and it is recommended to test the grid convergence by comparing results from different grids with different resolutions.

Cartesian Grids

The Cartesian Grid Module contains tools for creating and editing Cartesian grids. SMS supports regular and nonuniform Cartesian grids as well as regular and stretched telescoping grids (see Figure 4-1).

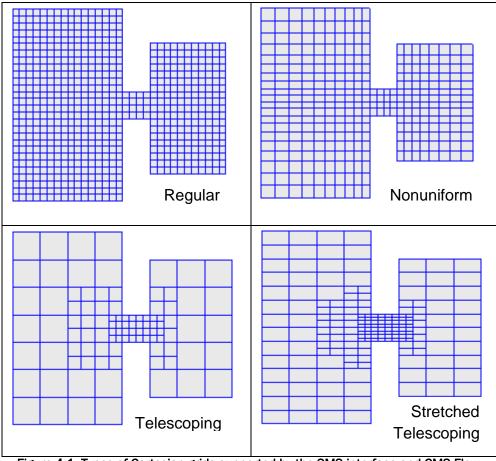


Figure 4-1. Types of Cartesian grids supported by the SMS interface and CMS-Flow.

Regular Cartesian grids are the easiest to generate making them useful for feasibility type studies, simple field cases, or test runs for more complicated field cases. Nonuniform Cartesian grids allow local refinement by gradually varying the grid spacing. These grids are offer more flexibility than regular Cartesian grids for a relatively low additional cost in generation. Nonuniform Cartesian grids are available for both CMS-Flow and CMS-Wave. For large complex modeling domains, Telescoping grids offer the most flexibility by providing local refine through the the subdivision or splitting of cells into four. In many cases, the hydrodynamics can be alighned with one of the Cartesian coordinates. For these cases, the number of grid cells can be reduced by using a stretched Telescoping grid. Currently in SMS, the stretched Telescoping grids can only have a constant aspect ratio between the grid resolution in the *x* and *y* directions.

🛄 Create 2D Grid Frame

The 2D Cartesian Grid Frame (purple box) creation tool allows the user to visually specify the location and orientation of the grid in space. To create a grid frame, simple click three times to the desired length and width dimensions. SMS will complete the rectangle.

🙀 Select 2D Grid Frame

A 2D Cartesian Grid Frame can be modified with this selection tool. Once the frame is generated, the edges can be modified, the grid can be rotated (by selecting a small circle usually found in the lower left part of the grid), and the grid can be selected (middle black square) for manipulating location or opening the Grid Properties dialog box.

An existing grid can be read in from a CMS-M2D simulation file, or created through the Map Module. To enter the Cartesian Grid Module from another module, select *Cartesian Grid Data* from the Data Tree. With a grid in memory, the following tools are available to edit the grid:

Select Cell

The *Select Cell* tool is used to select a grid cell. A single cell is selected by clicking on it. A second cell can be added to the selection list by holding the SHIFT key while selecting it. Multiple cells can be selected at once by dragging a box around them. A selected cell can be de-selected by holding the SHIFT key as it is clicked. When a single cell is selected, its *Z* coordinate is shown in the Edit Window. The *Z* coordinate can be changed by typing a new value in the edit field, which updates the depth function. If multiple cells are selected, the *Z* coordinate field in the Edit Window shows the average depth of all selected cells. If this value is changed, the new value will be assigned to all selected cells. With one cell selected, the Edit Window shows the number of selected cells.

🔣 Select Row/ 🔣 Select Column

The *Select Row* and *Select Column* tools are used to select cell rows and columns, respectively. Multiple rows and columns are selected in the same manner as selecting multiple individual cells: holding the SHIFT key, etc.

🔢 Insert Column/ 📑 Insert Row

When the *Insert Column* or *Insert Row* tools are active, clicking within a cell splits the row/column containing the selected cell, creating a new row or column in the grid. The *Z*-values of all split cells are the same as the original cells' values.

🕂 Drag Column/ 茾 Drag Row Boundary

The position of the edge of rows or columns in a grid can be changed with the *Drag Column* or *Drag Row* tools. These tools make one column/row narrower while making its neighbor wider. These tools allow for manual specification of the resolution in specific portions of the grid. Note that depth values are not adjusted, so significant dragging of boundaries should be avoided or depths should be re-interpolated after the boundaries are modified.

🛗 Create Cell String

The *Create Cell String* tool allows the modeler to group a string of cells together for the purpose of assigning boundary conditions. Cell strings are created automatically around water boundaries when a grid is generated. The user may create others as desired or delete and replace the automatically generated cell strings. When the *Create Cell String* tool is active, the modeler selects each cell to be added to the string. By holding down the SHIFT key, all boundary cells between the previously selected cell and the selected cell are added to the cell string.

🗱 Select Cell String

To specify a boundary condition, the modeler must create a cell string along the desired boundary cells, and then select the cell string while the *Select Cell String* tool is active. Specification of a boundary condition for the selected cell string is conducted through the *Assign BC* dialog, which is accessed through the CMS-M2D pull-down menu.

CMS-Flow Grid Files

When a CMS-Flow grid is saved, SMS writes a *CMS-Flow Grid File* named "*_grid.h5". If the grid is non-telescoping, this file contains the *x* and *y* coordinates as well as the water depths. If a telescoping grid is saved, then the SMS saves multiple-grids in the *CMS-Flow XMDF Grid File* which correspond to different levels of resolution of the telescoping grid. This information is only used by SMS. The information used in CMS when saving a telescoping grid is saved in the CMS-Flow Telescoping Grid File with the extension "*.tel". The *Telescoping Grid File* contains the cell coordinates, resolution, connectivity and water depths. A description of *XMDF Grid File* and the *Telescoping Grid File* along with Matlab scripts for reading these files are provided in Appendix B.

Table 4-1 provides a descryption of the CMS-Flow cards used to specify the grid information in CMS.

Card	Arguments	Default/Format	Description
GRID_FILE	character character	"[case name]_grid.h5"	File name (including path if not the same as the execta- ble) of the CMS-Flow XMDF Grid File. For a description of the file see <u>XMDF CMS-</u> Flow Grid File (* grid.h5).
TELESCOPING	character	"[case name].tel"	File name (including path if not the same as the execta- ble) of the CMS-Flow Teles- coping Grid File <u>ASCII Te-</u> <u>lescoping Grid File (*.tel)</u> .
GRID_ANGLE	real	none	Specifies the grid angle measured counter-clockwise from the the East direction to thegrid <i>i</i> -axis (<i>x</i> -axis).
GRID_ORIGIN_X	real	none	Specifies the <i>x</i> -coordinate of the grid origin.
GRID_ORIGIN_Y	real	none	Specifies the <i>y</i> -coordinate of the grid origin.
BATHYMETRY_DATASET	character character	"[case name]_grid.h5" "[case name]/Datasets/Depth"	Specifies the file name and path of the bathymetry data- set. Depths are specified as positive values.

Table 4-1. CMS-Flow cards related to the grid specification and options.

Important Notes:

- The grid angle specified in the Card File and the Telescoping Grid File use different convensions (unfortunately). The angle in the Card file is measured counter-clockwise from the East direction to the grid *x*-axis, while the angle in the *Telescoping Grid File* is measured clock-wise also from the East direction to the grid *x*-axis.
- By default the *XMDF Grid File* also contains the bathymetry and other spatial datasets including the the bottom friction, hard bottom, D50, etc. However, these datasets can be specified in separate files.
- If a telescoping grid is used, the bathymetry is included by default in both the *XMDF Grid File* and the *Telescoping Grid File*. However, the depths in the in Telescoping Grid have -999 values for inactive cells. These cells are internally removed from the computational grid. Therefore, when using telescoping grids, only the depth values in the *Telescoping Grid File* are used by CMS.

Horizontal Coordinate System and Conventions

CMS-Flow uses a local coordinate system in which all vector values are positive along the I and J axis (Figure 4-2). All output vector arrays are specified in the local coordinate system. Any input that is specified on the local grid must be specified in the local coordinate system (e.g. initial condition for currents, interpolated wave forcing, etc). If input vector arrays are specified on a different grid, such as a spatially variable wind field or waves on a CMS-Wave grid, then the vectors are assumed to follow the coordinate system of their native grid. The grid is always created in SMS with the origin is by default always at the lower left hand corner of the grid.

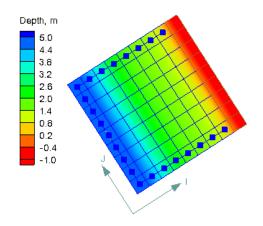


Figure 4-2. CMS-Flow local coordinate system

In the SMS, the term "projection" refers to a horizontal map projection such as "State Plane" or "Geographic". Within the software, a global projection can be associated with a project. Individual datasets may also have their own projections, which if properly associated with their original reference, can be displayed without the global projection reference. Previous versions of the SMS software referred to projections as "coordinate systems" and reprojection as "coordinate conversion".

The projection for the project can be specified from the *Edit | Projection* pull-down menu command. Changing the projection does not alter the coordinates of the project data. To change the projection of the individual project data, the dataset must be reprojected to the common reference system. The CMS models operate in a Cartesian coordinate system such as State Plane or UTM and units must always be specified in meters.

Vertical Coordinate System and Conventions

Water depths in CMS are positive and land elevations are negative. The vertical reference Datum in CMS is a local datum. Therefore, any vertical datum can be used by the user. However, it is important to note that the default initial water surface elevation is set to zero with respect to the local datum.

In choosing the vertical datum for CMS it is important to understand the differences between tidal and geodetic datums. It is common to use both types of datums. However, the most appropriate datum type depends on the project application. Tidal datums are a standard elevation defined by a tidal statistic such as the arithmetic mean of mean high water and mean low water over a tidal epoch known as the Mean Tide Level or MTL. Therefore, tidal datums vary spatially and in time. This is an important difference with respect to Geodetic datums such NAVD88 which are fixed reference elevations determined by geodetic leveling. Tidal datums should not be used for projects where the tidal datums vary spatially. It is common for bays to have tidal setup or super elevation of the mean water level caused by wind, fresh water inflow, and bottom friction. This will cause a difference in the MTL in the bay with respect to the ocean as illustrated in Figure 4-3.

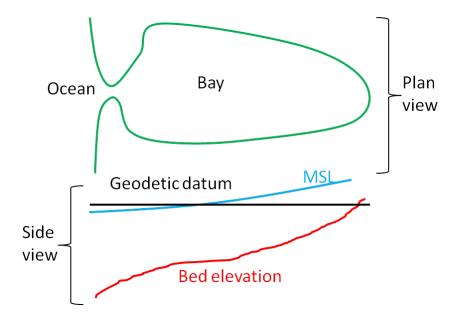


Figure 4-3. Schematic of showing the difference between MSL (tidal) and geodetic datums.

Important Notes:

- If the project site is a small section of coastline with a small harbor or structures, then it is generally ok to use a tidal datum.
- If the project site includes an estuary, it is recommended to use a geodetic datum.
- When using a geodetic datum in combination with tidal constituent forcing, it is recommended to offset the entire bathymetry so that the geodetic datum matches the offshore MSL. The reason for this is that tidal constituent boundary assumes that the reference datum is MSL.
- When using a geodetic datum in combination with water level time series, it is important to make sure the time series has the same geodetic datum as the bathymetry. In addition, an initial water level may be specified which is close to MSL (see the Hot Start section for details).
- The units of the horizontal coordinate system should always be set to meters. By default, in SMS the horizontal units are set to feet. It is recommended to change the units to meters and save this setting by clicking on the menu *File* | *Save Settings*. This will save the horizontal projection and will be set every time SMS opens.
- A good merged bathymetric dataset is often the result of spending 50% of the time it takes to get the model up and running just on checking and cleaning up the bathymetry alone. If a significant amount of time is spent paying attention to detail, there will be less instability problems in the hydrodynamic model which are difficult to trace back to the source.
- Always double check that you have calculated your datum corrections very carefully by analyzing and comparing to nearby datasets.
- When merging bathymetry, try both methods to combine the datasets and evaluate for depth consistency and dataset coverage.
- Save often, and occasionally save new versions of your mergetesting in new folders. If you delete too much of one dataset, its useful to have the older, datum converted and unaltered datasets.

CMS-Flow Model Setup

All of the CMS-Flow model parameters, settings, and output options are controlled from the *CMS-Flow Model Control Window* (see Figure below). The window also has a section for Advanced Cards in which features and options can be entered which have not been incorporated into the SMS interface yet or more advanced model features more experienced users.

CMS-FLOW Model Control	[. 🛛
	Tidal Wind/Wave (Dutput Cells Input Advanced
Time Control Start date: Start time: Simulation duration: Ramp duration: Hydrodynamic time step: Hot Start Hot Start Hot Start Vrite Hot Start output Time to write out: Automatic recurring Ho Interval: Threads Number of threads: Water Parameters Water temperature:	12:00 AM • 12:00 AM • 120.0 hrs 24.0 hrs 600.0 secs file 1.0 hrs 0.0 hrs	Dutput Cells Input Advanced Parameters Depth to begin drying cells: 0.05 m Include wall friction Latitude throughout grid • • Cell-specific latitude • 0.00 • Momentum Equation • Include advective terms • • Include mixing terms Solution Scheme • • •
Help		OK Cancel

Figure 4-4. CMS-Flow Model Control: Model Parameters tab for specifying time series output of CMS-Flow calculated datasets.

Flow Options and Parameters

- 1. Click on *CMS-Flow*, *Model Control*, and set each tab as the following figures (Figure 4-4 through Figure 4-6).
- 2. For *Time Control*, change the *Simulation duration* to 744.0 hours, *Ramp* to 24 hours, and *Hydrodynamic time step* to 1.0 (must be tested by running CMS-Flow only).
- 3. For *Transport Parameters*, change the *Transport rate* to 1.0 and the *Morphologic time* step to 10 seconds, check *Use non-equilibrium transport* and set the parameters as those in Figure 4-4.

A description of the CMS-Flow cards specified in the Model Control window are described in Table 4-2.

Card	Arguments	Default	Range	Description
STARTING_JDATE	integer	none	none	Sets the the simulation starting time in as Julian date in yyddd, where yy is the two digit year and ddd is the three digit day.
STARTING_JDATE_HOUR	integer	none	none	Sets the the simulation starting time hours.
DURATION_RUN	real	none	none	Sets the duration of the simulation in hours.
DURATION_RAMP	real	0.05	>=0.0	Specifies the length of the ramp pe- riod. For details on the ramp period see the <u>Ramp Period</u> section.
HYDRO_TIMESTEP	real	none	none	Sets the time step for the hydrodynam- ics.
NUM_THREADS	integer	1	>=1	Specifies the number of threads for parallel processing on multi-core ma- chines.
WATER_TEMPERATURE	real	none	none	Water temperature in °C. The water temperature is used in the calculation of the water kinematic viscosity.
WATER_DENSITY	real	1025	none	Specifies the water density in kg/m ³ . The water density is assumed to be constant for the simulation.
DRYING_DEPTH	real	0.05	>=0.0	Specifies the critical depth in m for wetting and drying. For details on the wetting and drying see the <u>Wetting</u> <u>and Drying</u> section.
USE_WALL_FRICTION_TERMS	character	ON	ON OFF	Turns on or off the wall friction. For details on the wall friction calculation see the <u>Rigid Wall Boundary Condition</u> section.
CELL_LATITUDES	character character	none	none	Specifies the XMDF fileand path for the cell latitudes. If specified and aver- age latitude is calculated for the grid and used to estimate the Coriolis pa- rameter. By default the cell latitudes

 Table 4-2. CMS-Flow Cards associated with the Flow Tab.

				are stored in the XMDF Model Para- meters File. For additional details on this file see <u>XMDF CMS-Flow Model</u> <u>Parameters File (* _mp.h5)</u> .
AVERAGE_LATITUDE	real	0.0	-90° to 90°	Specifies the average latitude in de- grees for the grid. The average latitude is used to estimate the Coriolis para- meter.
USE_ADVECTION_TERMS	charater	ON	ON OFF	Turns on or off the advection terms. This card applys to hydrodynamics, sediment transport and salinity trans- port.
USE_MIXING_TERMS	character	ON	ON OFF	Turns on or off the mixing or diffusion terms. This card applys to hydrody- namics, sediment transport and salini- ty transport.
SOLUTION_SCHEME	character	IMPLICIT		Sets the temporal solution scheme for all governing equation sin CMS-Flow.

Important Note:

• A description fo the *Hot Start* section of the *Flow* tab, see the <u>Hot Start</u> section.

Bottom Friction

Bottom Friction Dataset

In SMS versions 10.1 and earlier, the bottom roughness is specified using the Manning's *n* coefficient in the *Cells* tab of the *CMS-Flow Model Control* window. In SMS 11.0, the option is provided to use a roughness height, or bottom friction coefficient in addition to the Manning's coefficient. In SMS 11.0 the bottom roughness is specified in the *Bottom Friction Dataset* section of within the *Input* tab of the *CMS-Flow Model Control* window (see Figure 4-5). The *Bottom Friction Dataset* is specified at every computational (ocean) cell and is required for each model simulation.

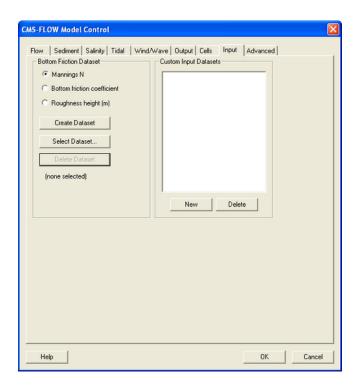


Figure 4-5. Specification of the *Bottom Friction Dataset* via the *Input* tab of the *CMS-Flow Model Control* window in SMS 11.0

Creating the bottom friction dataset

In SMS 11.0 each time a new CMS-Flow simulation is created a bottom friction (roughness) dataset needs to be created using the *Create Dataset* button (see Figure 4-6). The bottom friction parameter (related to Manning *n*) is spatially varying (cell-specific) over the grid domain. The default value upon grid creation is 0.025. At times a user may desire to represent locations where added friction is needed due to structures, vegetation, or increased turbulence due to rapid changes in current speed.

Flow Sediment Salinity Tidal	Wind/Wave Output Cells Input Advanced Custom Input Datasets	
Mannings N		
C Bottom friction coefficient		
C Roughness height (m)		
Create Dataset		
Select Dataset		
Delete Dataset		
(none selected)		
(inite contract)		
	New Delete	
	annings N	
	Default Mannings N value	
	0.022	
	OK Cancel	
L		

Figure 4-6. Initialization of the Manning's N Dataset in SMS 11.0

Once the *Bottom Friction Dataset* is created and the *CMS-Flow Model Control* window closed, a new auxiliary dataset will appear in the *SMS Project Explorer* (see Figure 4-7).

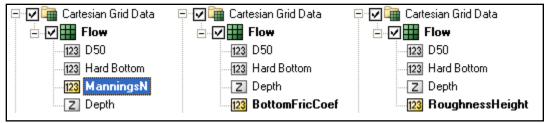


Figure 4-7. Three SMS Project Explorer showing the Manning's *n*, Bottom Friction Coefficient and Roughness Height datasets.

A description of the CMS-Flow cards related to the bottom friction datasets are shown in Table 4-3.

Card	Arguments	Range	Description
USE_WALL_FRICTION	character	ON OFF	Turns on or off wall friction
MANNING_N_DATASET	character character	none	Grid file name and dataset path for the input Manning's n dataset
BOTTOM_FRICTION_COEF_DATASET	character character	none	Grid file name and dataset path for the input bottom friction coefficient dataset
ROUGHNESS_HEIGHT_DATASET	character character	none	Grid file name and dataset path for the input roughness height dataset

Table 4-3. SMS Cards related to the bottom friction datasets

Spatially Constant Bottom Friction

Additional advanced cards (in Table 4-4) are available for setting the bottom friction to a constant for the whole grid. These cards are useful for running sensitivity analysis for a wide range of values in cases which can be approximated with a single constant bottom friction value.

Table 4-4. Advanced	Cards to set bottom friction	dataset to a constant value
---------------------	------------------------------	-----------------------------

Card	Arguments	Default	Range	Description
MANNING_N_CONSTANT	real	none	>=0.0	Specifies a constant input <i>Man- ning's n</i> coefficient. Over-rides any previous bottom friction cards.
BOTTOM_FRICTION_COEF_CONSTANT	real	none	>=0.0	Specifies a constant input <i>Bottom</i> <i>Friction Coefficient</i> . Over-rides any previous bottom friction cards.
ROUGHNESS_HEIGHT_CONSTANT	real	none	>=0.0	Specifies a constant <i>Roughness</i> <i>Height</i> in m. Over-rides any pre- vious bottom friction cards.

Wave-enhanced Bottom Friction

In the presence of waves, the mean (short-wave averaged) bottom shear stress which is used in the momentum equations is enhanced. There are 5 different options in CMS for estimating the wave-enhanced bottom friction. The default is a simple quadratic formula but can be changes using the *Advanced Card* described inTable 4-5.

Card	Arguments	Default	Options	Description
WAVE-CURRENT_MEAN_STRESS WAVE_CURRENT_MEAN_STRESS	character	QUAD	QUAD DATA2 DATA13 F85 HT95	Defines the model used for calculating the mean bottom shear stress used in hydro
WAVE_BOTTOM_FRICTION_COEFFICIENT	real	0.5	0.3-0.7	Wave bottom friction coefficient used for qua- dratic combined wave- current mean bed shear stress calculation.

Table 4-5. Advanced Card used for specifying the wave-current mean stress formulation

Bed Slope Friction Factor

The bed slope friction factor accounts for the increased surface area over sloping beds as compared to the horizontal area. This feature may be turned *On* or *Off* through the Advanced Card described inTable 4-6.

Table 4-6. Advanced Card used for activating the bed slope friction factor

Card	Arguments	Default	Options	Description
BED_SLOPE_FRICTION_FACTOR	character	OFF	ON OFF	Specifies whether to include the bed slope friction factor or not in the calcu- lation of the bed friction

Wall Friction

The wall friction enhances the flow drag perpendicular to any dry boundary. The wall friction may be turned *On* or *Off* in the *Flow* tab of the *CMS-Flow Model Control* window (seeFigure 4-8). The default in SMS is for the wall friction to be *ON*. Table 4-7 shows the CMS card used activating the wall friction.

CMS-FLOW Model Control	X
CMS-FLOW Model Control Flow Sediment Salinity Tidal Wind/Wave Output Cells Input Advanced Time Control Itime 01/01/1980 Itime Parameters Depth to begin diving cells: 0.05 m Start date: 01/01/1980 Itime Itime 0.05 m Start date: 01/01/1980 Itime Depth to begin diving cells: 0.05 m Simulation duration: 87580.0 hrs Include wall friction Latitude throughout gid Cell-specific latitude 0.00 Hydrodynamic time step: 1800.0 secs Momentum Equation Momentum Equation Initial conditions file Include advective terms Include mixing terms Initial conditions file Include mixing terms Mode Vine Hot Start output file hrs Number of layers: Solution Scheme Threads 1 Inplicit Solution Scheme Implicit Water Parameters 15.0 C Water density: 1025.0 kg/m^3	
Help OK Cancel	

Figure 4-8. Wall friction specification in the SMS 11.0 *CMS-Flow Model Control* window.

Card	Arguments	Default	Options	Description
USE_WALL_FRICTION	character			Turns on or off wall friction

Table 4-7. SMS Cards related to the bottom friction datasets

Eddy Viscosity

Due to the large amount of turbulence in the surf zone, the nearshore eddy viscosity and resulting mixing terms can be quite large making the flow sensitive to the eddy viscosity formulation implemented. Turbulent mixing is calculated in CMS using the eddy viscosity concept. For a detailed description of the eddy viscosity models in CMS see section <u>Eddy Viscosity</u>. In SMS 11.0 all of the eddy viscosity options and parameters are entere via Advanced Cards and only the option is given to turn *On* or *Off* the mixing terms (Figure 4-9).

Figure 4-9. Toggle for turning On and Off the mixing terms in the SMS 11.0 interface.

A description of the CMS-Flow Cards related to eddy viscosity is shown, below, in Table 4-8.

Card	Arguments	Default	Options/ Typical Range	Description
USE_MIXING_TERMS	character	ON	ON OFF	Turns On and Off the mixing terms in the momentum and transport equations.
TURBULENCE_MODEL	character	SUBGRID	SUBGRID FALCONER PARABOLIC MIXING- LENGTH	Specifies the turbulence model used. For details on the different turbulence models see section <u>Eddy Viscosity</u> .
EDDY_VISCOSITY_CONSTANT	real	1.0E-6	>=0.0	Constant contribution or base value of eddy viscosity
EDDY_VISCOSITY_BOTTOM	real	0.0667	0.02-0.1	Coefficient related to the contri- bution to eddy viscosity from the bottom shear
EDDY_VISCOSITY_HORIZONTAL	real	0.4	0.1-0.2	Coefficient related to the contri- bution to eddy viscosity from horizontal velocity gradients
EDDY_VISCOSITY_WAVE	real	0.5	0.2-1.0	Coefficient related to the wave bottom friction contribution to eddy viscosity
EDDY_VISCOSITY_BREAKING	real	0.05	0.05-0.1	Coefficient related to the wave breaking contribution to eddy viscosity

Table 4-8. CMS card used to set turbulence model and eddy viscosity terms

Important Notes:

- **1.** The eddy viscosity can be calibrated by looking at several features of the flow. Increasing the eddy viscosity
 - a. Increases the width of the longshore current.
 - **b.** Increases the spread of the ebb and flood tidal jet currents.
 - c. Decreases the offshore extent of the ebb jet current.
 - d. Smoothes out small gyres and recirculation zones.
- **2.** The eddy viscosity affects the sediment mixing since the sediment mixing coefficient is calculated as the eddy viscosity divided by the Schmidt number.

Wave Mass Flux Velocities

The wave flux velocities (also referred to as the wave mass transport velocity) are included in the continuity and momentum equations (see Chapter 2). By default the wave flux velocit The wave flux velocities have two contributions; one due to the Stokes velocity and the second due to the surface roller. By default the surface roller contribution is tu

Card	Arguments	Default	Options/ Typical Range	Description
WAVE_MASS_FLUX	character	OFF	ON OFF	Turns on and off the wave mass flux velocities
ROLLER_MASS_FLUX	character	OFF	ON OFF	Turns on or offthe contribution to the wave mass flux velocities due to the surface roller in the surf zone. Only used if surface roller model is turned on.

Table 4-9. CMS card used to turn on or off the wave mass flux velocites

Wind and Atmospheric Pressure Forcing

Spatially Constant Wind

Spatially constant wind is specified in the Wind/Wave tab of the CMS-Flow Model Control window (see Figure 4-10).

MS-FLOW Model Control	utput Cells Input Advanced
Wind Data	Wave Data
Include wind	Include radiation stresses:
Import From File	Select (none selected)
Velocity (m/s)	Include wave conditions:
	Height: Select (none selected) Period:
Direction (deg.)	Select (none selected) Direction:
	Select (none selected) Dissipation: Select (none selected)
Wind From:	
North = 0 deg. South = 180 deg.	
East = 90 deg. West = 270 deg.	
Anemometer height: 5.0 m	

Figure 4-10. CMS-Flow Wind/Wave tab in the CMS-Flow Model Control window.

Card	Arguments	Description
WIND INPUT CURVE	character	File name and path of the spatially constant wind time series. By de- fault, the wind curve is saved in the CMS-Flow Model Parameters File (*_mp.h5)

Table 4-10. CMS cards used for spatially constant wind forcing.

Spatially Variable Wind and Atmospheric Pressure

CMS-Flow V4.0 and higher have the option to use spatially variable wind and atmospheric pressure forcing. Currently, this feature is specified in the advanced card section. There are currently two input options for spatially variable winds and atmospheric pressure: (1) Single ASCII Wind/Pressure File and (2) Multiple Oceanweather Files. These input formats and their cards are described in the following sections. When using spatially variable winds and atmospheric pressure it is good to keep in mind the following notes.

Important Notes:

- 1. Interpolation File: When using spatially variable winds CMS will output a file named *Intpcoef_wndfl.bin*. This file contains the coefficients used to interpolate the winds and atmospheric pressure to the CMS-Flow grid. If the same flow and wind grids are run, the model will automatically detect the interpolation file and read in the coefficients instead of calculating them. If the either grid is changed in size, the model will automatically detect this and recalculate the coefficients. However, if the grids are changed but stay the same size, the model will not be able to detect that they have changed. Therefore, whenever any changes are made to the flow or wind grids, it is best to delete the prior interpolation file.
- 2. Ramp Period: During the ramp period, the ramp is applied to both the wind shear stresses and spatial variations of the atmospheric pressure.

Single ASCII Wind and Atmospheric Pressure File

This file format is equivalent to the ADCIRC fort.22 format with NWS=6. The winds and atmospheric pressure are specified on a rectangular grid at constant temporal intervals. The wind grid is assumed to be in the same horizontal coordinate system as the CMS grid. The wind data is spatially interpolated using an inverse distance method and temporally interpolated using linear interpolation. The grid is assumed to vary from North to South and West to East so that north-west corner is the grid origin. The spatial extents of the wind/pressure grid must be consistent with the flow grid. The wind file is written from West to East starting at the North-West Corner. The file is read in in free format. An example of section of a single ASCII Wind File is shown below.

7.5835 1.2324 0.00 7.5835 1.2324 0.00 7.5835 1.2324 0.00 7.5835 1.2324 0.00

An example FORTRAN code used to read the file is shown below:

```
!For each wind snap shot
do i=1,nwindi
    do j=1,nwindj
        read(wunit,*,end=444) wndspdx(i,j),wndspdy(i,j),atmpres(i,j)
    enddo !j
enddo !j
```

Example CMS Card File Section

WIND_PRESSURE_SINGLE_FILE	"wind.dat"
WIND_PRESSURE_GRID_PARAM	201 201 50000.0 -50000.0 500.0 500.0
WIND_PRESSURE_TIME_INCREMENT	360000.0 !seconds

A description of the cards related to winds and atmospheric pressure are described, below, in Table 4-10.

Table 4-11. CMS-Flow cards related to winds and atmospheric pressure

Card	Arguments	Туре
WIND_PRESSURE_SINGLE_FILE	Name of fleet wind and pressure file	character
WIND_PRESSURE_GRID_PARAM	Nwlat, Nwlon, wLatMax, wLonMin, wLatInc, wLonInc	integer and real
WIND_PRESSURE_TIME_INCREMENT	wTimeInc	real

Important Notes:

- 1. The wind is assumed to start at the start of the CMS simulation.
- 2. The wind grid is assumed to be in the same horizontal coordinate system as the CMS grid.
- 3. The wind velocities must be in m/s and the atmospheric pressure in Pa.
- 4. If no atmospheric pressure data is available, a constant value may be specified. Since only the gradient of the atmospheric pressure is used in forcing the model, a constant atmospheric pressure is equivalent to no atmospheric pressure forcing.

Oceanweather Wind File

The Oceanweather format uses separate ASCII files to specify the wind speeds, atmospheric pressure and grid coordinates. The CMS-Flow cards used to specify the Oceanweather files are described below.

 Table 4-12. CMS-Flow cards used to specify the Oceanweather wind, atmospheric pressure and grid coordinates files.

Card	Arguments	Туре
OCEANWEATHER_WIND_FILE	Name of Oceanweather, Inc. wind file (*.win)	character
OCEANWEATHER_PRES_FILE	Name of Oceanweather, Inc. pressure file (*.pre)	character
OCEANWEATHER_XY_FILE	Name of Oceanweather, Inc. coordinate file (*.xy)	character

The file format for the Oceanweather wind file (*.win) is best described with an example:

Oceanwea	ther WIN/PI	RE Format			2008	3090912	2008091406	
iLat= 11	8iLong= 201	1DX=0.0150I	OY=0.0150SV	VLat=28.50	000SWLon=-9	96.000DT=2	200809091200	
-4.8891	-4.8873	-4.8855	-4.8838	-4.8821	-4.8805	-4.8789	-4.8774	
-4.8759	-4.8744	-4.8730	-4.8717	-4.8704	-4.8692	-4.8680	-4.8669	
-2.1530	-2.1382	-2.1233	-2.1085	-2.0937	-2.0788	-2.0637	-2.0486	
-2.0335	-2.0184	-2.0035	-1.9887	-1.9741	-1.9598	-1.9458	-1.9322	
-1.9190	-1.9062	-1.8938	-1.8820	-1.8707	-1.8600			
iLat= 113	8iLong= 203	1DX=0.0150I	DY=0.0150SV	VLat=28.50	000SWLon=-9	96.000DT=2	200809091215	
-4.9107	-4.9090	-4.9074	-4.9058	-4.9043	-4.9028	-4.9014	-4.9001	
-4.8988	-4.8975	-4.8963	-4.8952	-4.8942	-4.8932	-4.8923	-4.8914	
-4.8906	-4.8898	-4.8889	-4.8881	-4.8873	-4.8866	-4.8860	-4.8854	

The last two arguments of the header are the starting and end times in yyyymmddhh. The wind data are preceded by a header line with the grid information. iLat and iLong are latitude North and longitude West. DX and DY are the grid spacing in units of degrees. SWLat and SWLon are the coordinates of the south-west grid point. DT is the actual time in yyyymmddhhMM. First the wind velocities in the x-direction are read then the velocities in the y-direction. The wind speeds are written in m/s.

An excerpt of the FORTRAN code used to read the file is shown below:

```
open(nunit,file=windfile,status='old')
read(nunit,*) !skip header
11 format(t6,i4,t16,i4)
read(nunit,11) nwindi, nwindj
backspace(nunit)
 !...
13 format(68x,I4,4(I2))
read(nunit,13,end=333,err=333) iyear,imonth,iday,ihour,imin
!...
12 format(8f10.0)
read(nunit,12,end=333,err=333) ((wndspdx(i,j),j=1,nwindj),i=1,nwindi)
read(nunit,12,end=333,err=333) ((wndspdy(i,j),j=1,nwindj),i=1,nwindi)
!...
333 close(nunit)
```

Oceanweather Pressure File

The file format for the Oceanweather pressure file (*.pre) is best described with an example:

```
        Oceanweather WIN/PRE Format
        200809012

        2008091406
        iLat= 118iLong= 201DX=0.0150DY=0.0150SWLat=28.50000SWLon=-96.0000DT=200809091200

        1012.8565 1012.8564 1012.8563 1012.8563 1012.8563 1012.8563 1012.8563 1012.8564
        1012.8563 1012.8587 1012.8591 1012.8596 1012.8600 1012.8605 1012.8610 1012.8616

        ...
        1014.2051 1014.2062 1014.2073 1014.2084 1014.2096 1014.2107 1014.2119 1014.2130
        1014.2141 1014.2152 1014.2164 1014.2175 1014.2186 1014.2197

        iLat= 118iLong= 201DX=0.0150DY=0.0150SWLat=28.50000SWLon=-96.0000DT=200809091215
        1012.9089 1012.9089 1012.9089 1012.9090 1012.9091 1012.9092 1012.9094

        1012.9095 1012.9089 1012.9103 1012.9103 1012.9106 1012.9109 1012.9113 1012.9117
        ...
```

The last two arguments of the header are the starting and end times in yyyymmddhh. The atmospheric pressure data (in units of mbar) is preceded by a header line with the grid information. iLat and iLong are latitude North and longitude West. DX and DY are the grid spacing in units of degrees. SWLat and SWLon are the coordinates of the south-west grid point. DT is the actual time in yyyymmddhhMM.

Oceanweather Coordinate File

The file format for the Oceanweather coordinate file (*.xy) should contain the coordinates of the Oceanweather grid in the same coordinate system as the CMS-Flow grid. The order of the points should be from the south-west corner along each row. An example of an Oceanweather Coordinate File is shown below.

```
903301.20526 77626.22617
904769.21902 77663.98766
906237.22790 77701.93744
907705.23188 77740.07550
909173.23093 77778.40184
910641.22504 77816.91646
...
```


Important Notes:

- The first column is the horizontal coordinate, and the second is the vertical coordinate.
- The coordinates must be in the same coordinate as the CMS.

Tip:

• The easiest way to generate the Oceanweather Coordinate File is to make an ASCII file containing the coordinates in geographical coordinates, bring it into SMS, reproject on the CMS coordinate system and export the coordinates into a file to be used as the Oceanweather Coordinates File. A small fortran program provided <u>here</u> converts the Oceanweather grid information to an *.xy file. This can also be downloaded from the CIRP website: http://cirp.usace.army.mil/CIRPwiki/images/8/82/WINDLOC.rar

Wind Reference Frames

Winds are specified in an Eulerian reference frame with respect to the solid earth. When the wind in the same direction of the currents the wind shear stress is lowered (Figure 4-11, left). When the wind and currents are in opposing directions, the wind shear stress is increased. For example, in the case of a current velocity of 1 m/s, with an opposing wind speed of 5 m/s, the Eulerian reference frame will give a surface stress proporsional to $(5 \text{ m/s})^2 = 25 \text{ m}^2/\text{s}^2$, while the Lagrangian reference frame will produce a surface proporsional to $(5 \text{ -}(-1) \text{ m/s})^2 = 36 \text{ m}^2/\text{s}^2$, which is an increase of 44%.

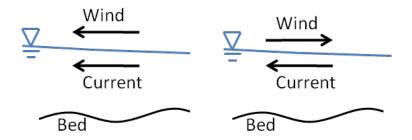


Figure 4-11. Schematic of wind and currents in same (left) and opposing directions (right).

The wind reference frame is specified with the advanced card described in the table below.

Table 4-13. CMS-Flow card for specifying the reference frame.

Card	Arguments	Default	Options	Description
WIND_REFERENCE_FRAME	character	EULERIAN	EULERIAN LAGRANGIAN	Sets the reference frame for wind forcing

Important Notes:

- 1. By default, the wind reference frame is set to Eulerian. It is recommended field applications to change the wind reference frame to Lagrangian.
- 2. The lagrangian reference frame is especially important for cases with high wind velocities such as storms.

Wind Drag Coefficient

The wind drag coefficient is calculated with the Hsu (1988) formula. The drag coefficient may be modified to scale the wind surface stress. The table below described the cards related to the wind drag coefficient. For further details on the wind drag coefficient see section <u>Wind Surface Stress</u>.

Card	Arguments	Default	Range	Description
WIND_DRAG_COEFFICIENT	real	0.4	>0	kappa in Hsu (1988)for mula for the wind drag coefficient. Scales the wind drag coeffi- cient (Not the wind drag coefficient).
WIND_DRAG_SCALE_FACTOR	real	1.0	0-1	Scaling factor for the wind drag coefficient

Anemometer Height

By default, the CMS assumes that the input wind velocities are specified at a 10-m height, if the height is different, the user may enter a different value as the Anemometer height. In SMS 11.0, the anemometer height is specified in the *Wind/Wave* tab of the *CMS-Flow Model Control* window. The wind velocities are internally converted to a 10-m reference height using the 1/7 rule (see Section <u>Wind Surface Stress</u>).

Table 4-15. CMS-Flow cards related to winds and atmospheric pressure

Card	Arguments	Default	Range	Description
ANEMOMETER_HEIGHT	real	10.0	>0	Height of wind speeds in meters

CMS-Flow Boundary Conditions

Boundary conditions for CMS-Flow are assigned along cellstrings. Cellstrings are a collection of cells used to identify the spatial extent of a boundary condition type. When a CMS-Flow grid is generated, cellstrings are automatically generated along all of the boundaries. The user has the option to use any of these cellstrings or to create new cellstrings. Once cellstrings have been created, each a boundary cellstring needs to assign a boundary type.

Assigning Boundary Conditions

CMS-Flow has five types of boundary conditions which are listed and discussed below. The figure below shows the CMS-Flow Boundary Conditions window in SMS. All CMS-Flow boundary conditions are forced at the edges of the domain by use of cellstrings defined with the Surfacewater Modeling System (SMS). Cellstrings can either be created manually or using the SMS tool called *Generate Along Boundary* which is found under the *Cellstring* menu.

Flux Boundary Condition.

The flow rate boundary condition specifies a time series of water fluxes in units of m^{3}/s per cell. To assign a flux BC in SMS:

- 1. If not already created by SMS, create the cellstring at the flux boundary (see section <u>Creating and Deleting Cell Strings in SMS</u> for details).
- 2. Select the cellstring (see section <u>Selecting Cellstring</u> for details) and open the *CMS-Flow Boundary Conditions Window* (see section <u>Opening the CMS-Flow Boundary Conditions Window</u> for details).

Important Notes:

- Total flow rate specified is divided between the total number of cells in the cellstring with each assigned a portion of the total flux as function of the local water depth and bottom friction.
- This boundary type may only be specified along cellstrings which are straight.
- Positive fluxes are directed inward and negative fluxes are directed outward.

Single Water Level Time Series Curve.

This is the option called *Define Curve* in SMS. In this BC, a single time series of water levels is specified and is applied at all of the cells along a boundary cell string. The time series curve may be specified by either importing an SMS *.xys file, copying tabular data into SMS, or manually entered the time series information in SMS. To assign this type of BC in SMS:

- 1. Click on the *Select a Cellstring* button
- 2. Right-click the boundary cellstring
- 3. Select Assign BC (Figure 4-12).
- 4. Select the *WSE-forcing* boundary condition, and click curve undefined (Figure 4-13) under *Define Curve*.

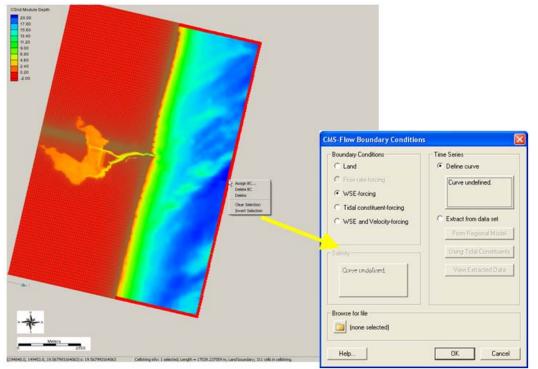
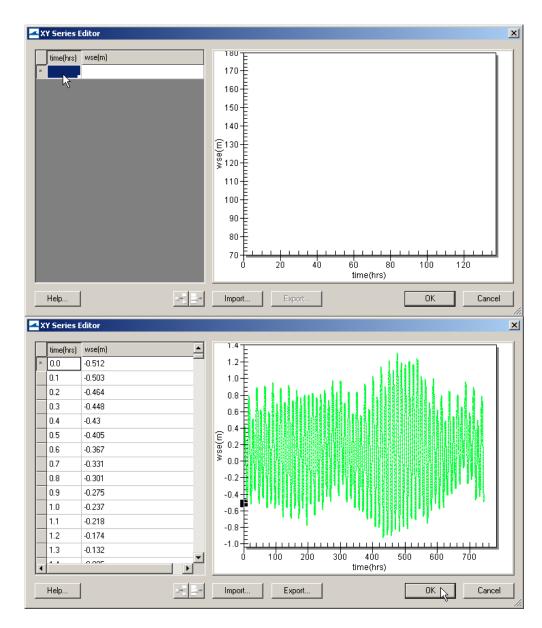



Figure 4-12. Selecting the cellstring along the ocean boundary, and clicking on Assign BC.

- 5. Copy-paste a time series into the *XY Series Editor* (Figure 4-13),
- 6. Click on the *Export* button to save the water level time series to an SMS xys file (time series file).

7. Save the *SMS project File* (*.sms) or *CMS-Flow Simulation File* (*.cmcards).

Figure 4-13. Top: is the blank XY Series Editor; Bottom: after the data is pasted in.

Tips:

• When specifying the time series forcing in SMS manually or by copying from an spreadsheet, it is recommended to save the time series forcing in SMS XY Series Files (*.xys). These files serve as a record of the model forcing, serve as a backup in case the Model Parameters File becomes corrupt, and can easily be reloaded in SMS for different model setups.

Extracted Water Levels.

This BC type is named *Extract from data set* in SMS 11.0. For this BC, water level time series are extracted for each cell along a cellstring. The water levels can be extracted from either:

- 1. A larger domain solution (ie. Larger CMS-Flow or ADCIRC grid solution files)
- A tidal database. SMS reads and extracts tidal constituent information from either an ADCIRC
 (http://www.unc.edu/ims/ccats/tides/tides.htm) or LePrevost
 (http://sms.aquaveo.com/leprovost.zip) tidal database and constructs water level time series at each boundary cell.

Important Note:

• Due to their size, the tidal databases do come installed with SMS, and must be downloaded separately. Before using the tidal databases in SMS for the first time it is necessary to follow the steps below.

Setting up the Tidal Database Extraction Feature in SMS.

- 1. Download the tidal database. The ADCIRC database can be downloaded from <u>http://www.unc.edu/ims/ccats/tides/tides.htm</u> and LeProvost from <u>http://sms.aquaveo.com/leprovost.zip</u>.
- 2. Unzip the files and save them to the SMS directory (preferably).
- 3. Set the path to the tidal database by opening SMS and clicking on the *Edit* menu and selecting *Preferences...* (see Figure 4-14).
- 4. Enter the correct location (path) of the tidal database.

Map	Graphics Startup		
aeneral Images F	ile Locations Project Explorer Toolbars T	ime	
Model Executables			
Model	Executable	^	
CMS-FLOW	c:\program files\sms 11.0\models\CMSFLOW\CMS-F		
CMS-FLOW - Explicit	c:\program files\sms 11.0\models\CMSFLOW\explicit		
CMS-WAVE	c:\program files\sms 11.0\models\CMS\WAVE\CMS		
FESWMS	c:\program files\sms 11.0\models\fst2dh\fst2dh.exe		
Generic	BROWSE		
GFGEN	c:\program files\sms 11.0\models\tabs\gfgenv45.exe		
NE Pacific Tidal Database	BROWSE		
NW Atlantic Tidal Database	BROWSE		
PBL	BROWSE	~	
DOF 1011			
Other Files			
File	Location	^	
LATLON conversion files	BROWSE		
LeProvost tidal database	BROWSE		
North Arrows Path	c:\program files\sms 11.0\NorthArrows\		
TUFLOW Simulations Lo	C:\Documents and Settings\All Users\Documents	~	
		_	

Figure 4-14. Setting the tidal database executable location in the SMS Preferences window.

Tidal/Harmonic Boundary Condition.

CMS and SMS 11.0 support to 37 tidal constituents. The names and speeds are provided in Table 4-15.

Constituent	Speed	Constituent	Speed	Constituent	Speed	Constituent	Speed
SA*	0.041067	SSA*	0.082137	MM*	0.54438	MSF*	1.0159
MF*	1.098	2Q1*	12.8543	Q1*	13.3987	RHO1*	13.4715
01*	13.943	M1*	14.4967	P1*	14.9589	S1*	15.0
K1*	15.0411	J1*	15.5854	001*	16.1391	2N2*	27.8954
MU2*	27.9682	N2*	28.4397	NU2*	28.5126	M2	28.9841
LDA2*	29.4556	L2*	29.5285	T2*	29.9589	S2	30
R2*	30.0411	К2	30.0821	2SM2*	31.0159	2MK3*	42.9271

Table 4-16. Tidal Constituents names and speeds in solar hours implemented in CMS.

M3*	43.4762	MK3*	44.0252	MN4*	57.4238	M4	57.9682
MS4*	58.9841	S4*	60.0	M6	86.9523	S6*	90.0
M8*	115.9364						

* Only available through advanced cards for CMS >v4.0

Salinity Transport

Salinity refers to the salt content of water. Its value runs typically from 0 for fresh water to 31-35 ppt (parts per thousand) for ocean water. In water bodies with poor mixing and limited water exchange, or experiencing high evaporation, salinity can be higher and lead to formation of brine. Table 4-16, taken from the Wikipedia, presents typical values and nomenclature for describing degree of saline water:

Table 4-17. Water salinity classification.

Fresh water	Brackish water	Saline water	Brine
< 0.05 %	0.05 – 3 %	3 – 5 %	> 5 %
< 0.5 ppt	0.5 – 30 ppt	30 – 50 ppt	> 50 ppt

In coastal zones and estuaries, both temporal and spatial variations in salinity are controlled by changes in circulation, waves, tides, precipitation, evaporation, and freshwater inflows. These changes in salinity can have major effects on water density and water stratification, changing circulation patterns. Dynamic behavior of suspended sediment can be controlled by the salinity-driven flow and mixing. Any sustained changes to salinity can directly change the aggregation and consolidation of cohesive sediment as well (Nicholson and O'Connor 1986). Salinity can also alter the water chemistry that is closely related to marine organisms. Distribution and abundance of marine life will change water turbidity and define water quality in coastal and estuarine systems. Modifications of coastal inlets, such as channel deepening and widening and rehabilitation or extension of jetties may alter the salinity distribution within the estuary.

Example Application in SMS Interface

Matagorda Bay is the largest estuarine bay on the coast of Texas and is connected to the Gulf of Mexico and the Gulf Intracoastal Waterway (GIWW) through Matagorda Ship Channel (MSC), a federally-maintained inlet, and Pass Cavallo, a natural inlet just downdrift from the MSC (Figure 4-15).

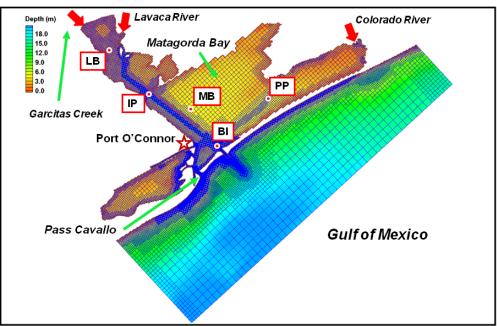


Figure 4-15. CMS domain, quadtree grid, and bathymetry of Matagorda Bay, TX. Red dots are the survey stations and red arrows indicate freshwater inflow locations.

In application of the CMS to Matagorda Bay, a telescoping grid was developed to discretize the bay and the offshore. The computational domain extends approximately 80 km alongshore and 20 km offshore, and the seaward boundary of the domain reaches to the 25 m isobath. Figure 1 shows the quadtree grid with 70,000 ocean cells, bathymetric features of Matagorda Bay, and the adjoining nearshore area. The CMS grid permits fine resolution in areas of high interest such as jetties and channels. The implicit solver of the CMS, with a large time step of 15 minutes, was employed for the simulation.

Freshwater discharges into the bay come from a number of streams along the coast. The Colorado and the Lavaca Rivers provide most of the inflows. However, "the freshwater discharge is typically less than 10 percent of the daily tidal exchange" in the bay (Kraus et al. 2006) (Figure 4-15). The bay entrance is protected by dual jetties from ocean waves. Momentum transfer, diffusive process and spatial distributions of salinity in the system are mostly controlled by wind, tide, and freshwater inflows.

CMS-Flow is driven by time-dependent water surface elevation at the offshore open boundary, wind forcing over the air-sea interface, and freshwater inflows from rivers and tributaries. Time varying salinity values at BI are also specified along the open boundaries with the water surface elevation and the river boundaries with the freshwater inflows (Figure 4-15). The initial salinity field is specified to the entire CMS domain as well.

1. CMS-Flow setup: The CMS hydrodynamic input files for Matagorda Bay are required and prepared by the SMS shown in Figure 4-16.

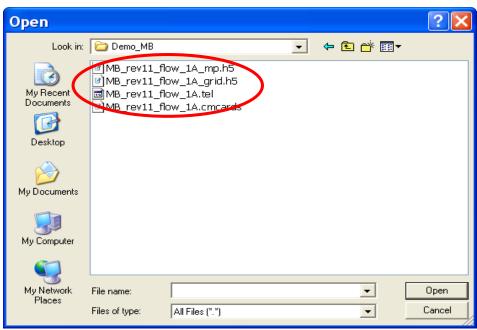


Figure 4-16. Files for the CMS-Flow salinity simulation.

After opening "MB_rev11_flow_1A.cmcards" in the SMS, choose CMS-Flow | Model Control, click on Salinity, and select Calculate salinity (Figure 4-17). A default time step equal to the hydrodynamic time step has been specified. In this case, 900 sec is used for the salinity calculation.

2. Salinity initial condition: Because of the large spatial variability of salinity in a coastal system, it usually requires long spin-up periods for a salinity simulation to reach to the present salinity distribution, which could range from a few days to weeks. To shorten the spin-up time, an accurate initial condition for the salinity field should be specified. There are two options to assign the initial salinity condition in CMS-Flow:

- i) A global initial salinity: Specify a constant initial value for the entire model domain. The salinity value can be specified by checking the *Global concentration (ppt)* under the *Initial condition* (Figure 4-17). If this option is applied, it is best to define an average representative salinity for the entire domain.
- ii) Spatially varying initial salinity: Generate a spatially varying initial salinity field by choosing the *Spatially varied* toggle under the *Initial condition* (Figure 4-17). Clicking the *Create Dataset* and assigning a value under the *Default concentration (ppt)* in the pop-up window will generate a new dataset with a constant initial salinity value. Clicking *OK* to close this window and then clicking *OK*, to close the *CMS-FLOW Model Control* window, will cause the dataset, *Salinity Initial Concentration*, to appear in the CMS-Flow data tree, as shown in Figure 4-18a. Highlight the dataset to specify different salinity values in the CMS domain in the same way to modify other datasets such as *D50* or *Hard Bottom*.

Salinity Calculate salinity	/ Tidal Wind/Wave Output Cells Input Advanced	
Time steps Transport rate: 60.	0 seconds 💌	
Initial condition C Global concentration (* Spatially varied Create Dataset	on (ppt): 0.0 Select Dataset Delete Dataset Salinity Initial Concentration	
	Salinity Global Concent X Default concentration (ppt) DECONSTRUCTION (DECONSTRUCTION OF CONSTRUCTION OF CONSTRUCTURE OF CON	

Figure 4-17. Setting up the salinity calculation and specifying spatially varied initial salinity.

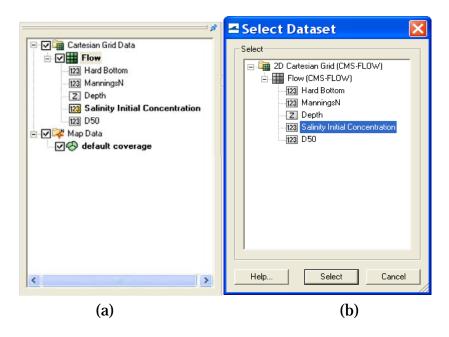


Figure 4-18. CMS-Flow data tree.

The dataset for a spatially varying initial salinity can also be generated by using the *Data Calculator* tool in the *Data* menu (Demirbilek et al. 2007). For an existing dataset, click the *Select Dataset* under the *Spatially varied* toggle and then select the dataset for the initial salinity that already exists (Figure 4-18b).

Based on the historical survey data, initial salinity is assigned in the dataset, *Salinity Initial Concentration*, for the Matagorda Bay system. The salinity varies from 21.0 ppt near the mouth of the Lavaca River to 33.0 ppt at the offshore open boundary (Figure 4-19).

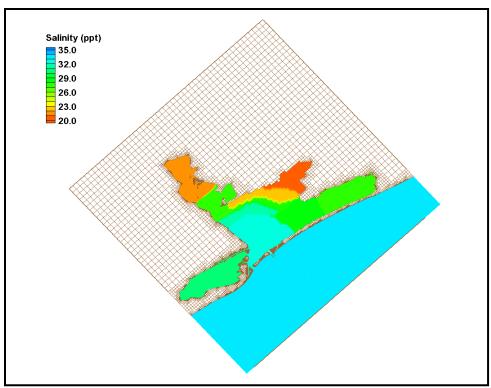


Figure 4-19. Initial salinity distribution.

- **3. Salinity boundary conditions:** To calculate salinity transport, salinity values at CMS-Flow boundaries need to be specified. Salinity may be specified at two boundary types in the CMS: water surface elevation (WSE) boundary (*WSE-forcing* boundary) (Figure 4-20a) and freshwater inflow boundary (*Flow rate-forcing* boundary) (Figure 4-20b).
 - i) WSE-forcing boundary: Using the *Select Cellstring* tool and clicking/ highlighting, the cellstring of water surface elevation boundary can be specified as shown in Figure 4-20a. Selecting *CMS-Flow* | *Assign BC* will open the *CMS-Flow Boundary Conditions* window (Figure 4-21). A time series of salinity can be assigned along the *WSE-Forcing* boundary by clicking the *Curve undefined* under *Salinity* on the left hand side of the dialog.

The time series is specified either by clicking the *Import* button to read a salinity boundary input file in xys format (Figure 4-22) (Aquaveo 2010), or by entering time and salinity values manually in two separate data columns, or by importing salinity data from an opened *Excel* file by using *Copy/Paste*.

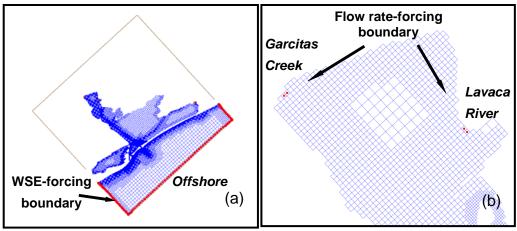


Figure 4-20. Salinity boundary types in the CMS.

CMS-FLOW Boundary	Conditions 🛛 🔀
Boundary Conditions C Land C Cross-shore Flow rate-forcing WSE-forcing Tidal constituent-forcing WSE and Velocity-forcing Salinity Curve undefined.	Time Series Define curve Image: Series Im
Browse for file	
Help	OK Cancel

Figure 4-21. Salinity specifications along the *WSE-forcing* boundary.

Figure 4-22. Salinity boundary input from a xys file.

The salinity and water surface elevation measurements at Pass Cavallo and the NOAA Corpus Christi Gage were assigned to the offshore boundary. The 12-day time series of salinity data (November-December 2005) is shown for the *WSE-forcing* boundary in Figure 8. Salinity at this location varies between 31.5 and 33.0 ppt and shows apparent influence of the ocean during the period.

ii) *Flow rate-forcing* boundary: Following the same steps as specifying *WSE-forcing* boundary, salinity values at freshwater inflow boundaries can be assigned together with flow specifications.

The Colorado River, the Lavaca River, and the Garcitas Creek are fresh water sources that flow into Matagorda Bay and flow measurements are available at three USGS gages. A zero salinity value is assigned at the *Flow rate-forcing* boundaries.

The CMS' capability in conducting the depth-averaged salinity calculation in Matagorda Bay was demonstrated. The CMS simulations represent the salinity transport in Matagorda Bay to a level useful for comparison between engineering alternatives, and to understand the temporal variation and spatial distribution of salinity and the interaction between tides, freshwater inflows and meteorological conditions in the bay.

Sediment Transport

The sediment transport controls are located in the *Transport* section of the *CMS-Flow Model Control* window as shown in Figure 4-23. The sediment transport is activated by going to the *Transport* section of the *CMS-Flow Model Control* and checking the box labeles *Calculate sediment transport*. The CMS card used to turn on or off the sediment transport is described in Table 4-17.

Iow Sediment Salinity Tidal Wind∧ Time steps Transport rate: 6.0 secon Sediment ✓ Calculate sediment transport	Wave Output Cells Input Advanced
Formulation:	Advection-diffusion
Transport capacity formula:	Lund-CIBP
Sediment density (kg/m²):	2650.0
Bed load scaling factor (-):	1.0
Suspended load scaling factor (-):	1.0
Morphologic acceleration factor (-):	1.0
Bed slope coefficient (-):	0.1
Sediment porosity (-):	0.38
Total load adaptation length method:	Constant 🗸 🗸
Hard Bottom Create Dataset Select Dataset	Delete Dataset Hard Bottom

Figure 4-23. SMS 11.0 interfaces for sediment transport.

Card	Arguments	Default	Range	Description
CALC_SEDIMENT_TRANSPORT	character	OFF		Turns on or off the sediment transport calculation.

Sediment Transport and Morphologic Time steps

The sediment transport and morphologic time steps are the time steps at which the transport and bed change equations are calculated. For the explicit model, these time steps can be several times that of the hydrodynamic model. Table 4-18 gives a description, default value, and range for the sediment transport and morphologic time steps.

Card	Arguments	Default	Range	Description
SED_TRAN_CALC_INTERVAL	real		greater or equal to hydro time step for explicit scheme, or equal hydro time step for implicit scheme	Time step used for transport equation. See note 2 below.
MORPH_UPDATE_INTERVAL	real		greater or equal to hydro time step for explicit scheme, or equal hydro time step for implicit scheme	Time step used for up- dating bed elevation. See note 2 below.

Important Notes:

- For the explicit solver, the sediment transport and morphologic time steps should always be equal or a multiple of the hydrody-namic time step.
- For the implicit solver, the sediment transport and morphologic time steps are always set to the hydrodynamic time and the user is not allowed to change them.

Sediment Characteristics

The sediment characteristics are set in the "Sediment" tab of the "CMS-Flow Model Control" window. The sediment characteristics are the porosity, density, shape, and fall velocity. Table 4-19 gives a description, default value, and range for the sediment characteristics.

Card	Arguments	Range	Default	Description
SEDIMENT_POROSITY	real	0-1	0.4	Sets the sediment porosity
SEDIMENT_DENSITY	real	none	2650	Sets the sediment density in kg/m^3
SEDIMENT_FALL_VELOCITY	real	4.0e-4 - 0.4	none	Sets the sediment fall velocity to a constant in m/s
SEDIMENT_FALL_VELOCITIES	integer real real	none	none	Sets the sediment fall velocity to a constant in m/s for mul- tiple grain size classes. The first number is the number of size classes and is followed by the fall velocities for each size class in ascending order.
SEDIMENT_FALL_VEL_FORM	character	SOULSBY- WHITEHOUSE WU-WANG	SOULSBY- WHITEHOUSE	Sets the sediment fall velocity formula.
SEDIMENT_COREY_SHAPE_FACTOR	real	none	0.7	Sets the Corey shape factor which is used in the Wu-Wang sediment fall velocity formula.

Important Notes:

- It is NOT recommended to use the sediment fall velocity, porosity, density or shape factor as calibration parameters. These parameters should be estimated using field or literature data.
- The sediment porosity and density are assumed constant for the whole domain and all grain size classes. For most coastal applications these assumptions are reasonable but need to be taken into consideration.

Transport model

There are currently three sediment transport models available in CMS: (1) Equilibrium total load, (2) Equilibrium bed load plus advection-diffusion for suspended load, and (3) Non-equilibrium total load. The first two models are selected by unchecking the checkbox which says "Use nonequilibrium transport" and selecting either "Total load" for the first model, or "Advection-diffusion" for the second next to input item named "Formulation". The third model is selected by checking the box "Use nonequilibrium transport". Table 4-20 gives a description, default value, and range for the sediment transport models.

Card	Arguments	Default	Range	Description
SED_TRAN_FORMULATION	character	NET	WATANABE LUND_CIRP A-D NET	Selects the sediment transport model. See note 1 below.
SED_TRAN_CALC_INTERVAL	real		greater or equal to hydro time step for explicit scheme, or equal hydro time step for im- plicit scheme	Time step used for transport equation. See note 2 below.
MORPH_UPDATE_INTERVAL	real		greater or equal to hydro time step for explicit scheme, or equal hydro time step for im- plicit scheme	Time step used for updating bed elevation. See note 2 be- low.

Table 4-21.	CMS card use	ed to specify the	e sediment transport	model.
-------------	--------------	-------------------	----------------------	--------

Important Notes:

- When selecting the equilibrium total load model, the SED_TRAN_FORMULATION card is set to either WATANABE or LUND_CIRP depending on the transport formula chosen. When selecting the equilibrium A-D model, the transport formula is specified through the concentration profile formula (described below).
- All three sediment transport models are available with the explicit solver, while only the NET is available witht implicit solver.

A description of each sediment transport model is described in the sections below.

Equilibrium Total load

In this model, both the bed load and suspended load are assumed to be in equilibrium. The bed change is solved using a simple mass balance equation known as the Exner equation.

Equilibrium Bed load plus Advection-Diffusion Suspended Load

Calculations of suspended load and bed load are conducted separately. The bed load is assumed to be in equilibrium and is included in the bed change equation while the suspended load is solved through the solution of an advection-diffusion equation. Actually the advection diffusion equation is a non-equilibrium formulation, but because the bed load is assumed to be in equilibrium, this model is referred to the "Equilibrium A-D" model.

Nonequilibrium Total Load

In this approach, neither the bed nor suspended loads are assumed to be in equilibrium. The suspended- and bed-load transport equations are combined into a single equation and thus there is one less empirical parameter to estimate (adaptation length).

Important Note:

• Only the Nonequilibrium Total Load model is available in CMS versions 4.0 and greater at the moment. Plans are under way to include the Equilibrium Bed plus Advection-Diffusion Suspended Load model as an option, but the Equilibrium Total Load model will likely be discontinued.

Sediment Transport Formula

The nearbed sediment concentration or concentration capacity are calculated with one of the following transport formula:

- Lund-CIRP (2006)
- Van Rijn (1998)
- Watanabe (1987)
- Soulsby-van Rijn (1997) (>=V4.0)

Table 4-21 gives a description, default value, and range for the sediment transport formulae.

Card	Arguments	Default	Range	Description
NET_TRANSPORT_CAPACITY	character	LUND- CIRP	LUND-CIRP VAN_RIJN SOULSBY WATANABE	Selects the transport formula. Note that SOULSBY is only available in v>=4.0
TRANSPORT_FORMULA	character	LUND- CIRP	LUND-CIRP VAN_RIJN SOULSBY WATANABE	Selects the transport formula. Note that SOULSBY is only available in v>=4.0.
SED_TRANS_FORMULATION	character	LUND- CIRP	LUND-CIRP A-D WATANABE NET	Selects the transport formula for the equili- brium total load model. Does not specify the transport formula for the equilibrium A-D and non-equilibrium total load models.

Table 4-22. CMS-Flow cards used to specify the sediment transport formula and related parameters and options.

CONCENTRATION_PROFILE	character	LUND- CIRP	EXPONENTIAL ROUSE	Selects the concentration profile to be used either in the equilibrium A-D or total load nonequilibrium models.
A_COEFFICIENT_WATANABE	real	0.1		Empirical coefficient which goes into the Watanabe transport formula.

Important Notes:

- Different transport formula may produce very different results in morphology change.
- The Lund-CIRP does well in predicting the surf zone sediment transport but tends to overestimate the transport rates near the wetting and drying limit and in deep water (>10 m).
- The van Rijn transport formula tends to underestimate the transport for conditions near the critical shear stress of motion. The formula also tends to underestimate the transport close to the shore-line.
- The Watanabe formula tends to underestimate the transport in deep water (>10 m).

Recommendations:

• For every sediment transport project, it is recommended to test several sediment transport formula to observe the sensitivity of the results to the sediment transport formula. The sediment transport formula is perhaps the most important parameter of any sediment transport model and the largest source error.

Scaling Factors

Transport Scaling Factors

The bed- and suspended-load transport scaling factors multiply directly by the transport capacity or near-bed sediment concentration calculated from the transport formula. These factors should be used to calibrate sediment transport rates and due to the large uncertainty in the transport formula, it is generally acceptable to use scaling factors in the range of 0.5-2.0. Table 4-22 gives a description, default value, and range for the bed- and suspended-load scaling factors.

Table 4-23. CMS card used to specify the bed- and suspended-load scaling factors.

Card	Arguments	Default	Range	Description
BED_LOAD_SCALE_FACTOR	real	1.0	0.5-2.0	Calibration factor for bed load transport capacity formula
SUSP_LOAD_SCALE_FACTOR	real	1.0	0.5-2.0	Calibration factor for suspended load trans- port capacity formula

Morphologic Acceleration Factor

The morphologic scaling factor is directly multiplied by the calculated bed change at every time step and is intended as a means of speeding up the computational time. It is only recommended for periodic boundary conditions or conditions that do not change rapidly over time. Table 4-23 gives a description, default value, and range for the morphologi acceleration factor.

Table 4-24. CMS card used to specify the morphologi acceleration factor.

Card	Arguments	Default	Range	Description
MORPH_ACCEL_FACTOR	real	1.0		Morphologic acceleracion factor. Directly multip- lies by calculated bed change.

Important Note:

• The morphologic scaling factor is NOT a calibration parameter. It should only be used in cases with periodic forcing and boundary conditions and even then it should be used with caution. It is NOT recommended to use larger values than 20-30.

Schmidt Number

The sediment mixing coefficient is calculated as the eddy viscosity divided by the Schmidt number. For simplicity the Schmidt number is assumed to be constant and the default value is 1.0. Table 4-24 gives a description, default value, and range for the Schmidt number.

Table 4-25. CMS card used to turn On or Off the mixing terms in the momentum and transport
equations

Card	Arguments	Default	Range	Description
SCHMIDT_NUMBER	real	1.0	none	Controls the sediment mixing strength

Important Note:

• The Schmidt number should NOT be used as a calibration number and should only be changed in sensitivity analysis or model testing.

Adaptation Coefficient

The adaptation coefficient is an important parameter to consider in setting up the CMS sediment transport model. The sensitivity of results to the adaptation coefficient depends on the spatial and temporal scales of the problem. For example, if a high resolution grid is used to model shortterm dynamics of a nearshore disposal site or a small inlet, then the adaptation coefficient is likely to be important. However, if a relatively coarse grid is used to study sediment pathways in a large estuary entrance, then the adaptation coefficient will not be important.

Total Load

There are four methods for calculating the total load adaptation coefficient in CMS:

1. CONSTANT_LENGTH: A temporally and spatially total load adaptation length is used for the whole domain. The total load adaptation coefficient is calculated as

$$\alpha_t = Uh/(L_t \omega_s) \tag{4-1}$$

where ω_s is the sediment fall velocity of the transport grain size, for single size sediment transport, or the median grain size, in the case of multiple-sized sediment transport.

2. CONSTANT_TIME: A temporally and spatially constant total-load adaptation time is used for the whole domain. The total load adaptation coefficient is calculated as

$$\alpha_t = h / (T_t \omega_s) \tag{4-2}$$

where ω_s is the sediment fall velocity of the transport grain size for single size sediment transport, or the median grain size, in the case of multiple-sized sediment transport.

3. WGHT_AVG_BED_SUSP_LENGTH: A temporally and spatially constant total-load adaptation time is used for

$$L_t = r_s L_s + (1 - r_s) L_b$$
(4-3)

where L_s is the suspended load adaptation length, L_b is the bed load adaptation length, and r_s is the fraction of suspended load of the total load. The methods for determining L_b and L_s are described in subsequent sections.

4. MAX_BED_SUSP_LENGTH: A temporally and spatially constant total-load adaptation time is used for

$$L_t = \max(L_s, L_b) \tag{4-4}$$

where L_s is the suspended load adaptation length and L_b is the bed load adaptation length. The methods for determining L_b and L_s are described in subsequent sections.

The CMS cards related to the total load adaptation coefficient are described in the Table 4-25 below.

Card	Arguments	Default	Options/Range	Description
ADAPTATION_METHOD_TOTAL	character	CONSTANT_LENGTH	CONSTANT_TIME WCHT AVC BED SUSP LENCTH	Sets the method for calcu- lating the total load adapta- tion coefficient.
ADAPTATION_LENGTH_TOTAL	real	10.0	>0	Total load adaptation length in meters.
ADAPTATION_TIME_TOTAL	real	2.0	>0	Total load adaptation time in seconds.

Table 4-26. CMS card used to specify the total-load adaptation coefficient.

Note:

• If the total-load adaptation length is set to -1.0, then the maximum of the bed- and suspended-load adaptation lengths is used. This is the input format used by SMS.

Recommendations:

- 1. When first setting up a sediment transport model, it is recommended to use a spatially constant total load adaptation length for simplicity.
- 2. If the user is not sure of the sensitivity of the results to the adaptation length for the specific project, then it is recommended to test different total load adaptation lengths; for example 5, 10, and 50 meters. This will provide an insight into the sensitivity of the results to the adaptation length. In many cases, the results are not found to be sensitive and the default value of 10 m can be used. If the results are found to be more tests are necessary in determining to optimal method and parameters for calculating the adaptation length.
- 3. WGHT_AVG_BED_SUSP_LENGTH is the most physically accurate method for determining the total load adaptation length. However, it can lead to relatively small adaptation lengths which cause instabilities, especially for large computational time steps. If this occurs then it is recommended to use MAX_BED_SUSP_LENGTH.

Bed Load

The CMS cards related to the bed load adaptation coefficient are described in the Table 4-26 below.

Card	Arguments	Default	Range/Options	Description
ADAPTATION_METHOD_BED	character	1.0	CONSTANT_LENGTH CONSTANT_TIME DEPTH_DEPENDANT	Calibration factor for bed load transport capacity formula
ADAPTATION_LENGTH_BED	real	10.0	none	Calibration factor for suspended load trans- port capacity formula
ADAPTATION_TIME_BED	real	1.0	0.5-2.0	Calibration factor for suspended load trans- port capacity formula
ADAPTATION_DEPTH_FACTOR_BED	real	10.0	none	

Table 4-27	CMS card used to s	specify the bed-load	adaptation coefficient.

Note:

• If the total-load adaptation length is set to a negative number, then the value is interpreted as being the bed-load adaptation length depth factor. The bed-load adaptation length is therefore calculated as the depth times the positive depth factor.

Recommendations:

• Based on experience, it is recommended to use a constant bed load length from one to three times the grid resolution.

Suspended Load

The suspended-load adaptation parameters only need to be specified if the total-load adaption coefficient is set as a function of the suspended-load adaptation length (see <u>Total Load</u> section). There are several options in CMS for specifying the sThe CMS cards related to the suspended-load adaptation coefficient are described in the Table 4-27 below.

Table 4-28. CMS card used to specify the suspened-load adaptation coeffici	ent.
--	------

Card	Arguments	Default	Range/Options	Description
ADAPTATION_METHOD_SUSPENDED	character	1.0	CONSTANT_LENGTH CONSTANT_TIME CONSTANT_ALPHA ARMANINI_DISILVIO LIN GALLAPPATTI	Calibration factor for bed load transport ca- pacity formula For addi- tional details on each method see the <u>Adaptation Coefficient</u> section.
ADAPTATION_COEFF_SUSPENDED	integer	1	1,2	Specifies the sus- pended-load adaptation method. See note below.
ADAPTATION_COEFFICIENT_SUSPENDED	real	2.0	0.5-2.0	Calibration factor for suspended load trans- port capacity formula
ADAPTATION_LENGTH_SUSPENDED	real	1.0	0.5-2.0	Calibration factor for suspended load trans- port capacity formula
ADAPTATION_TIME_SUSPENDED	real	1.0	0.5-2.0	Calibration factor for suspended load trans- port capacity formula

Notes:

 By default, SMS writes the CMS-Flow card ADAPTATION_COEFF_SUSPENDED. However, this card is outdated and can be confused with the card ADAPTATION_COEFFICIENT_SUSPENDED (see table above). Instead, it is recommended for the user to use the ADAPTATION_METHOD_SUSPENDED to specify the method for the suspended-load adaptation coefficient.

Hard Bottom

Hard Bottom is a morphologic constraint that provides the capability to simulate mixed bottom types within a single simulation. This cell-specific feature limits the erodibility of the constrained cells down to a specified depth below the water surface. During sediment transport calculations, exposed hard bottom cells may become covered through deposition. By default, CMS-Flow cells are fully-erodible cells with no specified hard bottom depth (inactive cells; denoted by the CMS-Flow null value of -999.0). Hard bottom only needs to be specified only for computational (ocean) cells.

Time steps Transport rate: 900.0	tecor - Morphologic: 900.0 tecor -					
Salinity						
Calculate salinity	Global concentration: 0.0 ppt					
Sedment						
Calculate sediment transport	Vise non-equilibrium transport					
Formulation	Advection-diffusion	^				
Transport capacity formula:	Lund-CIRP	1				
Sedment density (kg/m²):	2650.0					
Water density (kg/m²):	1025.0					
Water temperature (deg C):	15.0					
Bed load scaling factor (-):	1.0					
Suspended load scaling factor (-):	1.0	1				
Morphologic acceleration factor (-):	1.0	1				
Bed slope coefficient (-):	Bed slope coefficient (-): 1.0					
Hard Bottom						
Create Dataset	Select Dataset Hard Bottom					
D50						
Create Dataset	Select Dataset D50					

Figure 4-24. CMS-Flow Model Control window showing the location where the hard bottom dataset is specified.

Within the *CMS-Flow Model Control* window, the hard bottom dataset can be created from the *Sediment* tab. If the dataset does not exist, it can be created using the *Create Dataset* button. If a dataset exists (created using the Data Calculator) which represents the intended hard bottom specifications, the *Select Dataset* button can be used to select such dataset and copy the values to the hard bottom dataset.

When specified, cell hard bottom depths will appear in the Project Explorer as a scalar dataset beneath the CMS-Flow grid. This dataset can not be deleted, though it can be edited like any other dataset. A CMS-Flow simulation must contain the hard bottom dataset (even if it is not specified) so SMS will create a defaulted (inactive cells) dataset if it does not already exist when saving the simulation. The hard bottom dataset can created, edited, viewed and verified using the following SMS interface features.

Figure 4-25. SMS Project Explorer showing Hard bottom dataset

Hard Bottom Specification

Although the hard bottom dataset can be edited (when its the active dataset) by selecting a cell (or group of cells) and changing the scalar (S) value in the Edit Window, an user-friendly window exists which provides specification options. With the *Select Grid Cell* tool active, make a selection, right click to bring up the tool menu and choose the *Specify Hard Bottom...* option. This will open the CMS-Flow Hard Bottom Specification window.

The following options are provided in the Hard Bottom Specification window:

- **Use bathymetric cell depth** Sets the cell hard bottom depth to be the cell geometry value thereby creating an exposed non-erodible condition. If multiple cells were selected, then each cell will use its respective bathymetric depth.
- **Specified distance below bathymetric cell depth** Sets the cell hard bottom depth to be the cell geometry value plus the specified distance thereby creating a sediment-covered non-erodible condition. The distance is limited to positive values to ensure the hard bottom depth is greater than the geometry value. The cell can provide sediment for transportation, however, the amount of erosion is limited. If multiple cells were selected, then each cell will use its respective bathymetric depth.
- **Specified depth** Sets the cell hard bottom depth to the specified depth thereby creating a sediment-covered non-erodible condition similar to specified distance. The depth is limited to greater than the geometry value. If multiple cells were selected, then the depth is limited to greater than the largest geometry value and all cells will have the same value.

• **Unspecified** - Resets to an inactive hard bottom condition. The cell hard bottom depth is set to the CMS-Flow null value. If multiple cells were selected, then all cells will be reset.

If no cells are selected when opening the Hard Bottom Specification window, then all computational (ocean) cells will be used. If a selection of only non-computational cells, then specification cannot occur. If a selection contains computational and non-computational cells, then the specification will only apply to the computational cells.

If multiple computational cells with differing specifications are selected, the window will not display a selected specification type and the *OK* button will be disabled. This is to protect the previous specifications from being overwritten by mistake. The *OK* button will be enabled when an option is selected. The minimum hard bottom depth of the multiple computational cells selected will be displayed in the *Depth* edit field and the minimum hard bottom depth minus the maximum geometry depth of the multiple computational cells selected will be displayed in the *Distance* edit field.

Display Options

The hard bottom dataset (when its the active dataset) will only display the cells with hard bottom specified if the *Ocean cell* display option is turned on. Inactive hard bottom cells are not displayed.

CMS-Flow includes hard bottom symbols to differentiate specifications. On the *Cartesian Grid* page of the Display Options window (when CMS-Flow is the active model), the *Hard bottom symbols* check box controls the display of symbols that will appear in hard bottom cells (even if the hard bottom dataset is not active). If this is turned on, then the user must be aware of the individual symbol settings accessed by clicking on the *Options...* button. The *Options...* button displays the CMS-Flow Hard Bottom Symbols window.

Hard bottom symbols can be selected for three hard bottom specification types:

- **Non-erodible** Displayed in exposed hard bottom cells (cell hard bottom depth is equal to cell bathymetric depth).
- **Erodible to specified depth** Displayed in sediment-covered hard bottom cells (cell hard bottom depth is greater than cell ba-thymetric depth).

• **Invalid specification** - Displayed in hard bottom cells where the hard bottom depth is less than cell bathymetric depth (the geometry is below the erosion limit).

If the *Hard bottom symbols* check box is turned off, no symbols will be displayed and the individual settings cannot be accessed, however, the individual settings will not be changed.

Bed slope Term

The bedslope term accounts for the effect of gravity on sloped beds. The larger the bed slope coefficient, the more sediment tends to move downslope, thus smoothing the solution. The CMS-Flow used to specify the slope coefficient is described in Table 4-28 below. The bedslope coefficient is set in the *Sediment* tab of the *CMS-Flow Model Control* window in SMS 11.0.

Table 4-29. CMS card used to turn On or Off the mixing terms in the momentum and
transport equations

Card	Arguments	Default	Range	Description
SLOPE_COEFFICIENT	real	1.0		Bed slope coefficient which controls enters a diffusion term which moves sediment down slope

Avalanching

Avalanching is the process of sediment sliding when the critical angle of repose is reached. In CMS, avalanching is simulated using a mass conservative relaxation method which limits the bed slope to the critical angle of repose. For most coastal applications, the critical angle of repose is never reached, so it is not needed. The CMS-Flow cards used for specifying avalanching, and its options, are described in Table 4-29 below.

Card	Arguments	Range	Default	Description
USE_AVALANCHING	character	ON OFF	ON	Turns On or Off the avalanching.
RESPOSE_ANGLE	real	none	32°	Specifies the angle of repose in degrees.
AVALANCHE_MAX_ITERATIONS	integer	none	200	Specifies the maximum number of iterations used in the implicit solution scheme. For the explicit solution scheme, the avalanching is calculated every transport time step for one iteration.

Table 4-30. CMS-Flow cards related to avalanching.

Ramp Period

The option is available to not calculate the morphology change during the ramp period. The best practice is the start the model simulation so that the time when the ramp period ends corresponds to the time of the measured bathymetry. This avoids the initial bed erosion (although slight) of the bed. This also facilitates calculating simulation statistics such as transport rates and residual currents.

Table 4-31. CMS-Flow card used to turn On or Off bed updating during the ramp period.

Card	Arguments	Range	Default	Description
CALC_MORPH_DURING_RAMP	character	ON OFF		Turns On or Off the morphology change calculation during the ramp period

Total Load Correction Factor

The total load correction factor accounts for the nonuniform vertical profile of sediment concentration and current velocity and produces temporal lag in between the flow and sediment transport. The factor is used in the nonequilibrium total load sediment transport formula.

Table 4-32. CMS-Flow cards related to the total load correction factor.

Card	Arguments	Default	Range	Description
TOTAL_LOAD_CORR_FACTOR_CONSTANT	real	0.3-1.0	none	Sets the total load correction factor to a constant.
CONCENTRATION_PROFILE	character	LUND-CIRP VAN_RIJN EXPONENTIAL ROUSE		Sets the concentration profile to be used either in the pickup and deposition functions or the total load correction factor calculation.

Single-sized Sediment Transport

Hiding and Exposure Correction

This cell-specific parameter allows for the single-sized sediment transport model to make a hiding and exposure correction factor.

 Table 4-33. CMS card used for specifying the single-sized sediment transport hiding and exposure correction.

Card	Arguments	Default	Range	Description
TRANSPORT_GRAIN_SIZE	real	none	none	Transport grain size in mm. The transport grain size is the sediment size which is eroded, transported, and deposited. When this card is specified the D50 dataset is used to make a

				hiding and exposure correction to the critical shear stress.
HIDING_EXPOSURE_COEFFICIENT	real	0.7	0.6-1.0	Hiding and exposure coefficient.
SEDIMENT_STANDARD_DEVIATION	real	1.5	<=1.0	Specified the geometric standard deviation
D50_DATASET	character character	none	None	File and path in which the varying D50 infor- mation is stored.
CONSTANT_GRAIN_SIZE	Real	None	None	Defines single size grain and forces CMS to neglect D50 dataset.

Important Notes

- 1. If the no transport grain size is specified, then the transport grain size is calculated as the mean D50 of the whole domain.
- 2. If the card CONSTANT_GRAIN_SIZE is used, then the D50 dataset will be ignored.
- 3. The geometric standard deviation MUST be larger or equal to 1.0.

Boundary and Initial Conditions

In the case of the Equilibrium Total Load sediment transport model, all boundaries are set to the equilibrium transport rate. For the Equilibrium Bed Load plus Advection Diffusion model, the suspended load is specified as the equilibrium concentration at inflow cells and a zero gradient at outflow cells. For the Total load nonequilibrium sediment transport model, the sediment concentration is set to the equilibrium concentration at inflow cells and a zero gradient boundary condition is applied at outflow cells.

In the case an initial conditions file is NOT specified both the hydrodynamics and sediment concentrations are initialized as zero. If an initial conditions file is specified, than the initial sediment concentrations are read in. If an initial conditions file is specified but without the sediment concentration, than the initial sediment concentration is set to the equilibrium concentration.

Card	Arguments	Default	Range	Description
NET_LOADING_FACTOR	real	1.0	0.5-2.0	Used to specify under- or over- loading at sediment inflow boundaries. Only for NET.
SEDIMENT_INFLOW_LOADING_FACTOR	real	1.0	0.5-2.0	Used to specify under- or over-

Table 4-34. CMS Flow cards related to the boundary conditions.

				loading at sediment inflow boundaries.
CALC_MORPH_DURING_RAMP	character	ON	ON OFF	Determines whether to calculate the morphology change during the ramp period

Multiple-sized Sediment Transport

The CMS multiple-sized sediment transport model is calculated using the multifraction approach, in which the total sediment transport is equal to the sum of the transports of discrete sediment sizes classes.

The input information for multiple-sized sediment transport can be divided into the following groups:

- 1. Grain size classes
- 2. Fractional bed composition
- 3. Bed layer thickness
- 4. Mixing layer
- 5. Hiding and Exposure

Further details on each type of information are provided in the sections below.

Grain Size Specification

In the multiple-sized sediment transport model, the continuous grain sizes are divided into discrete bins or size classes. Each size class has a character diameter, and lower and upper limits. Because sediment sizes classes are transport from one cell to another the size classes must be constant over the whole domain. In CMS there are two options for specifying the grain size information:

- 1. Characteristic diameters
- 2. Size class limits

The characteristic diameters d_k are calculated using the geometric mean of the lower $d_{l,k}$ and upper $d_{u,k}$ bin limits

$$d_k = \sqrt{d_{lk} d_{uk}} \tag{4-5}$$

The bin width is given by

$$\Delta d_k = d_{uk} - d_{lk} \tag{4-6}$$

Table 4-34 below describes the CMS-Flow cards related to the grain size class information.

Card	Arguments	Example	Description
SEDIMENT_SIZE_CLASS_NUMBER	integer	3	Specifies the number of grain size classes.
MULTIPLE_GRAIN_SIZES	integer [real, real,, real]	3 0.1 0.2 0.3	Specifies the number of grain sizes followed by the grain sizes for each size class in mm.
SEDIMENT_SIZE_CLASS_DIAMETERS	integer [real, real,, real]	3 0.1 0.2 0.3	Specifies the number of grain sizes followed by the grain sizes for each size class in mm. Same as MULTIPLE_GRAIN_SIZES.
SEDIMENT_SIZE_CLASS_LIMITS	integer [real, real,, real]	4 0.07 0.15 0.26 0.34	Specifies the size classes limits. The first entry is the number of size class limits which is one greater than the number of size classes.

Table 4-35. CMS-Flow cards related to the grain size classes

Important Notes:

• It is only necessary to specify either the size class characteristic diameters or limits. The other will be calculated internally by the model.

Recommendations:

- Because each grain size requires the iterative solution of a separate transport formula, it is recommended to not use more 8-9 sediment size classes. For most cases, 3-5 sediment size classes is sufficient.
- A good and simple way of estimating the grain size classed based only on the size limits of the distribution is by distributing the diameters logarithmically so that

$$d_{k} = \exp\left[\ln d_{1} + \ln(d_{N} / d_{1}) \frac{k-1}{N-1}\right]$$
(4-7)

Fractional Bed Composition

Since the sediment size classes are constant for the whole domain, the bed composition is specified as the fractional amount of each size class per cell and per bed layer. In CMS V4.0 there are 5 options for specifying the fractional bed composition:

- 1. Two-dimensional horizontal (2DH) D50 dataset plus spatially constant geometric standard deviation (option D50_SIGMA).
- 2. 2DH D16, D50, and D84 datasets (option D16_D50_D84)
- 3. 2DH D35, D50, and D90 datasets (option D35_D50_D90)
- 4. 2DH Percentiles datasets.
- 5. Spatially (horizontally and vertically) constant size class fractions (option SIZE_CLASS_FRACTIONS)
- 6. Fraction of each sediment size class for each cell and bed layer (option FRACTIONS_DATASET)

A description of the CMS-flow card used to select each bed material composition option is described in Table 4-35 below.

 Table 4-36. CMS-Flow card used to specify the option for specifying the bed material composition.

Card	Arguments	Default	Options	Description
BED_COMPOSITION_INPUT	character	none	GMA D_D84 D_D90 PERCENTILES SIZE_CLASS_FRACTIONS FRACTIONS_DATASET	Selects the method for specifying the bed material composition.

Further details on each option are provided in the sections below.

D50 Dataset and Standard Deviation

This is the simplest and easiest way to specify the bed composition for multiple-sized sediment transport in CMS because it only requires the D50 dataset which is already in the SMS interface and one extra parameter, the geometric standard deviation.

• Assumptions:

- 1. The initial sediment sorting is constant for the whole domain
- 2. The initial bed composition may vary spatially according to the D50 dataset but is constant with depth
- 3. The initial grain size distribution can be approximated by a lognormal distribution

Sediment				
Calculate sediment transport	Use non-equilibrium transport			
Formulation	Advection-diffusion			
Transport capacity formula:	Lund-CIRP			
Sedment density (kg/m²):	2650.0			
Bed load scaling factor (-):	1.0			
Suspended load scaling factor (-)	1.0			
Morphologic acceleration factor (-)	1.0			
Bed slope coefficient (-):	0.1			
Sedment porosity (-):	0.3			
Total load adaptation length method:	Constant 👻			
Hard Bottom				
Create Dataset Select Dataset.	Delete Dataset (none selected)			
D50				
Create Dataset Select Dataset.	Delete Dataset D50			

Figure 4-26 Sediment tab of the CMS-Flow Model Control window (SMS 11.0)

The geometric standard deviation σg can be defined using the method of moments

$$\sigma_g = \exp\sqrt{\sum p_k \left(\ln d_k - \ln d_g\right)^2} \tag{4-8}$$

where p_k is the fraction, d_k is the size class diameters in mm, d_g is the geometric mean in mm given by

$$d_g = \exp\left(\sum p_k \ln d_k\right) \tag{4-9}$$

An alternate approach to the above equation for obtaining geometric standard deviation is by using the graphical measures (cumulative percentile values) (Folk and Ward, 1957)

$$\sigma_g \approx \sigma_G = \exp\left(\frac{\ln d_{16} - \ln d_{84}}{4} + \frac{\ln d_5 - \ln d_{95}}{6.6}\right) \approx \left(\frac{d_{84}}{d_{16}}\right)^{1/2}$$
(4-10)

where σ_G is a graphical measure of the geometric standard deviation. The size class fractions p_k are calculated using log-normal sediment size distribution

$$p_k = \frac{\Delta d_k}{d_k \ln \sigma_g \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\ln d_k - \ln d_{50}}{\ln \sigma_g}\right)^2\right]$$
(4-11)

Table 4-37. Sorting classification based on the geometric standard deviation (Folk and Ward, 1957)

Geometric Standard Deviation	Sorting Classification			
<1.27	Very well sorted			
1.27-1.41	Well sorted			
1.41-1.62	Moderately well sorted			
1.62-2.00	Moderately sorted			
2.00-4.00	Poorly sorted			
4.00-16.00	Very poorly sorted			
>16.00	Extremely poorly sorted			

A description of the CMS-Flow cards related to the D50_SIGMA option for specifying the bed material composition is provided in Table 4-37 below.

Table 4-38. CMS-Flow cards related to the D50 dataset and standard deviation

Card	Arguments	Default/Format	Description
D50_DATASET	character cha- racter charac- ter	[file name] [dataset path and name]	Specifies the D50 dataset file followed by the path and name. If the file name is not specified than it is assumed to be the grid file (*_grid.h5).
SEDIMENT_STANDARD_DEVIATION	real	1.5	Specifies the geometric sedi- ment standard deviation for all cells and layers in mm.

D16, D50, and D84 Datasets

The second approach for specifying the initial bed composition is using 2DH D16, D50, and D84 datasets. Because only the D50 dataset can be specified through the SMS interface, it is necessary to specify the additional datasets either through the *Custom Input Datasets* are by manually creating the datasets using the *Data Calculator* and exporting them to XMDF file(s).

• Assumptions:

- 1. The initial bed composition may vary spatially according to the D16, D50, and D84 datasets but is constant with depth
- 2. The initial grain size distribution can be approximated by a lognormal distribution

The bed sorting is estimated as

$$\sigma_g \approx \left(\frac{d_{84}}{d_{16}}\right)^{1/2} \tag{4-12}$$

The fractional bed composition is calculated using a log-normal distribution according to the above equations. The table below describes the CMS-Flow cards used for specifying the bed material composition using the D16, D50, and D84 datasets.

Card	Arguments	Default/Format	Description
D16_DATASET	character character	[file name] [dataset path and name]	Specifies the D16 dataset path and file name.
D50_DATASET	character cha- racter character	[dataset path and name] [file name] [dataset path and name]	Specifies the D50 dataset path and file name. If the file is not specified than it is assumed to be the model grid file (*_grid.h5).
D84_DATASET	character cha- racter	[file name] [dataset path and name]	Specifies the D84dataset path and file name.
CUSTOM_DATASET	character cha- racter	[file name] [dataset path and name]	Specifies a custom dataset path and file name. The custom dataset can be used for any addi- tional user defined dataset. The name of the dataset must be equal to the variable name. For example the D16 dataset must be named D16 and cannot be myD16.

Table 4-39. CMS-Flow cards related to the D16_D50_D84

Custom Datasets

The first approach of specifying the D16 and D84 datasets is by using the *Custom Input Datasets* section under the *Input* tab of the *CMS-Flow Model Control* window. The advantage of using this approach is that the user can edit the datasets once they are created without having to map each dataset as the *Elevation* dataset. It also avoids having to specify the dataset files and names manually in the *.cmcards file. The steps for creating and specifying the D16 and D84 datasets are outlined below:

- 1. Open CMS-Flow Model Control window and go to the Input tab.
- 2. To create the D16 dataset, click on the *New* buttom and a window will appear titled *New Editable Dataset*.
- 3. Name the dataset D16 for the D16 dataset or D84 for the D84 dataset. The names must be correct for CMS to be able to interpret the dataset.
- 4. Set the initial values by either specifying a spatially constant value or selecting a current dataset.
- 5. Click OK in the New Editable Dataset window
- 6. Repeat steps 2 through 5 for the D84 dataset.
- 7. Click OK in the CMS-Flow Model Control window
- 8. Save the CMS-Flow project

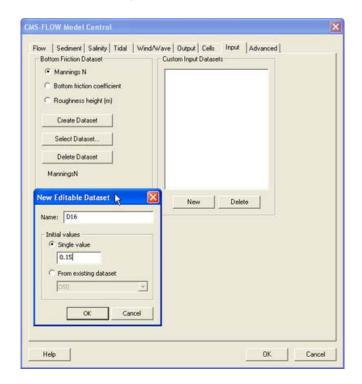


Figure 4-27. SMS project explorer showing Custom Datasets for D16 and D84.

3. Once the datasets are created the SMS project explorer will show a folder with the D16 and D84 datasets.

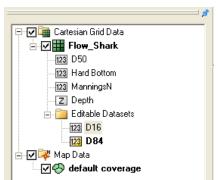


Figure 4-28. SMS project explorer showing Custom Datasets for D16 and D84.

4. After saving the CMS-Flow project the project folder will show a new dataset called *Flow_Shark_input_datasets.h5*.

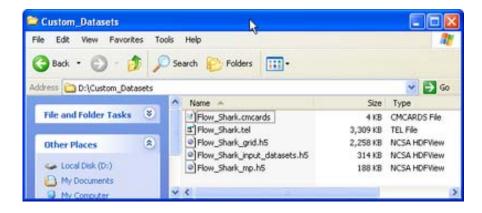


Figure 4-29. SMS project explorer showing Custom Datasets for D16 and D84.

5. *The data structure of the Flow_Shark_input_datasets.h5* file is shown in Figure 4-30 below.

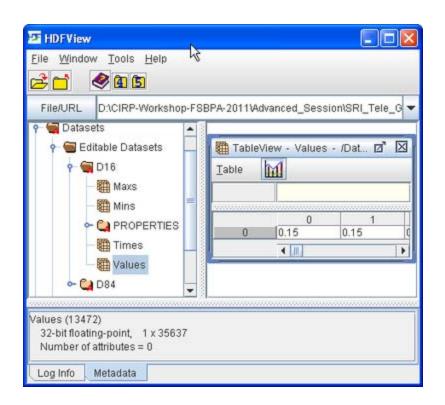


Figure 4-30. Structure of the *Custom Input Datasets* file shown in HDFView.

Exported Datasets

An alternate approach for specifying datasets is by exporting them into XMDF files and then specifying the file names and paths in the *Advanced* cards section of the *.cmcards file. The advantage of this approach is that is allows more flexibility in specifying project alternatives and also works for SMS versions 10.1 and earlier. To export the D16 and D84 datasets

Create and initialize the D16 and D84 datasets
 Click on the menu *Data* | *Data Calculator*

2. Enter a constant value under the *Calculator* section and make sure the *Output dataset name* is either D16 or D84.

ools	Data Calculator			
Math Compare datasets Sata Gelocitor Temporal Sanjle time steps Conversion Scalar to Vector Modification Mag.activity Filter	Data Sets Flow_Shark.(CMS-FLOW) 122 d1_D50 122 d2: Hard Bottom 122 d3. MarningsN (2) d4. Depth	Time Steps		
		Calculator		
				d1*0 + 0.15
		1 ()	min
		* In	x~y	max
		1.000	sqrt	ave
		- log		Lingerson I
	Add to Expression Data Set Info	+ 1/x	abs	trunc

Figure 4-31. SMS project explorer showing Custom Datasets for D16 and D84.

If necessary, edit the D16 and D84 datasets. As shown in Figure 4-32 below, it is not possible to edit the D16 and D84 datasets once they are created. A workaround for this is to set either dataset as the *Elevation* dataset, which then allows you to edit the dataset.

SHOT BOSLX	92483 44505445 Y: 150495 44681884 Z 10 9828195571	9 5: 0.150000059605
Caterian Gid Data Caterian Gid Data Flow, Shark Cit MarningtN Cit MarningtN Cit Depth Cit Did Did Did Cit MarningtN Cit Cit MarningtN Cit Cit Cit MarningtN Cit Cit Cit MarningtN Cit Cit MarningtN Cit Cit MarningtN Cit Cit MarningtN Cit Cit MarningtN Cit Cit MarningtN Cit Cit MarningtN Cit Cit MarningtN Cit Cit Cit MarningtN Cit Cit Cit MarningtN Cit Cit Cit Cit Cit Cit Cit Cit Cit Cit	Carterian O Segun 40	1 selected; Area = 4056 m ² ;

Figure 4-32. It is not possible to edit user defined datasets unless they are the Depth, D50, ManningN, Hardbottom, or a Custom Dataset.

- 2. Set the D16 dataset as the *Elevation* dataset:
 - Click on Data | Map elevation.

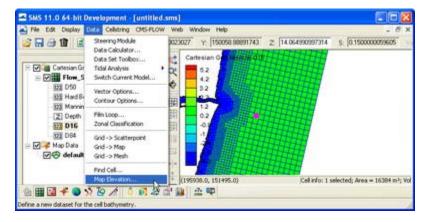


Figure 4-33. Mapping of D16 dataset as the *Elevation* dataset.

3. A window titled *Select Dataset* will appear. Select the D16 dataset and click *Select*.

lect	
Flow_Shark	^
123 D50	
123 Hard Bottom	
122 ManningsN 2 Depth	
D16	
123 D84	
	M
lect time step	
Al time steps	
00.00.00	

Figure 4-34. *Elevation* dataset selection.

4. The D16 dataset will show with a large *Z* on the left indicating that it is mapped as the *Elevation* dataset.

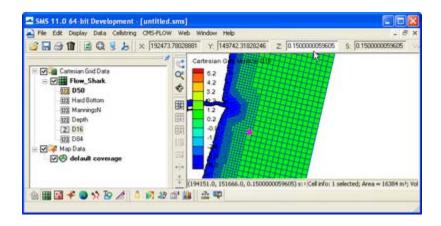


Figure 4-35. SMS window showing D16 dataset mapped as the *Elevation* dataset.

- 5. Once you are finished editing the dataset, make sure to remap the appropriate dataset as the *Elevation* dataset (usually called *Depth* dataset).
- 6. Export the D16 and D84 datasets to XMDF file(s). The datasets can be exported to the same or separate file. The important thing is that the correct file name is specified in the Advanced Cards.

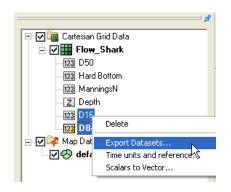


Figure 4-36. Exporting the D16 and D84 datasets.

This method is very similar to the previous method. The only difference is that the D35 and D90 datasets are used to estimate the bed sorting instead of the more commonly used D16 and D84 datasets. The reason for including this method is that the D35 and D90 datasets are also required for running the Paticle Tracking Model so it reduces the number of datasets that need to be prepared by the user in cases where both models are being run.

• Assumptions:

- 1. The initial bed composition may vary spatially according to the D35, D50, and D90 datasets but is constant with depth
- 2. The initial grain size distribution can be approximated by a lognormal distribution

The geometric standard deviation is estimated as

$$\sigma_g \approx \left(\frac{d_{90}}{d_{35}}\right)^{0.61} \tag{4-13}$$

The fractional bed composition is then calculated with log-normal distribution. Table 4-39 below describes the CMS-Flow cards used for specifying the bed material composition using D35, D50, and D90 datasets.

Table 4-40. CMS-Flow cards related to the D35_D50_D90 option for specifying the bed
material composition

Card	Arguments	Default/Format	Description
D35_DATASET	character character	[file name] [dataset path and name]	Specifies the D35 dataset path and file name.
D50_DATASET	character character character	[dataset path and name] [file name] [dataset path and name]	Specifies the D50 dataset path and file name. If the file is not specified than it is assumed to be the model grid file (*_grid.h5).
D90_DATASET	character character	[file name] [dataset path and name]	Specifies the D84dataset path and file name.
CUSTOM_DATASET	character character	[file name] [dataset path and name]	Specifies a custom dataset path and file name. The custom dataset can be used for any additional user defined dataset. The name of the dataset must be equal to the variable name. For example the D35 dataset must be named D35 and cannot be myD35.

Size Class Fractions

For this case, the fractional bed compositions are specified for each size class for all cells and all bed layers. The fractional bed compositions must

sum to 1.0. This option is useful for simulating cases where the bed composition is well known and is constant both in the horizontal and vertical directions.

• Assumption:

The initial bed composition is constant at every cell and layer for whole domain

Table 4-41. CMS-Flow cards related to the SIZE_CLASS_FRACTIONS option for specifying the bed material composition

Card	Arguments	Example	Description
SEDIMENT_SIZE_CLASS_FRACTIONS	integer [real, real,, real]	3 0.2 0.5 0.3	Specifies the fractional composition for each size class and for all cells and bed layers. The first entry is the number of grain size classes.

Bed Layer Thickness

The initial bed layer thickness needs to be specified by the user. There are three methods for specifying the initial bed layer thickness:

- 1. CONSTANT User specified constant for all cells and bed layers.
- 2. LAYER User specified bed layer thickness for each bed layer and is applied to all cells on the grid.
- 3. LAYER_DATASET User specified dataset for each cell and bed layer (3D dataset).

The CMS-Flow cards related to the bed layer specification are described in Table 4-41 below.

Card	Argu- ments	Default Format	Range	Description
BED_LAYER_THICKNESS_INPUT	character	none	CONSTANT LAYER_THICKNESS LAYER_DATASET	Sets the method for specifying the sedi- ment bed layer thick- ness.
BED_LAYER_THICKNESS_DATASET	character character	none	[file] [path]	Specifies the bed layer thickness file and data- set path.
BED_LAYERS_MAX_NUMBER	integer	8	>= Input bed layers	Sets the maximum number of bed layers. M

Table 4-42. CMS-Flow cards related to the general parameters

BED_LAYERS_CONSTANT_THICKNESS	real	none	> minimum layer thickness.	Sets the initial bed layer thickness to a constant in meters for all cells and bed layers.
BED_LAYERS_THICKNESS	integer [real, real,, real]	[N_lay] [thickness 1] [thickness N_lay]	none	Sets the thickness for each layer in meters for all cells.
BED_LAYER_MIN_THICKNESS	real	0.01	none	Sets the minimum layer thickness. Appli- cable to all bed layers including the mixing layer (layer 1).
BED_LAYER_MAX_THICKNESS	real	0.5	none	Sets the MAXIMUM- layer thickness. Appli- cable to all bed layers including the mixing layer (layer 1).

Important Note:

• If the initial bed layer thickness is not specified than it will be set to zero.

Mixing Layer

The mixing layer is the first layer from the surface which is allowed to exchange (or mix) sediments with the sediment transport. The mixing layer thickness is calculated based on the median grain size and bed form size. The option is also available to set the mixing layer to a constant. The CMS-Flow cards used for setting the mixing layer thickness to a constant is described in Table 4-42 below.

Card	Arguments	Default	Range	Description
MIXING_LAYER_CONSTANT_THICKNESS	REAL		greater than minimum thickness	Sets the mixing layer thickness to a constant in meters.

Imporant Notes:

- 1. Using a larger mixing layer will slow down the temporal change in bed material composition and enhance model stability.
- 2. Erosional cases tend to have smaller mixing layer thicknesses and depositional cases tend to have larger mixing layer thicknesses.

3. The mixing layer thickness should NOT be used as a calibration parameter.

Hiding and Exposure

The hiding and exposure is an important parameter for multiple-sized sediment transport. Currently, there are no well established coastal sediment transport formulas for nouniform sediments. The most common approach is to adapt single-size transport formulas by applying correction factors. The most common of these factors is the hiding and exposure correction. The implementation of this factor varies depending on the transport formula and usually involves a coefficient (exponent) which needs to be calibrated. Because all of the transport formulas used in CMS were originally developed for uniform sediments, there is still a large uncertainty in the value of the hiding and exposure coefficient. It is expected that the hiding and exposure coefficient will be different for different transport formula especially since the implementation of the hiding and exposure correction may be different for different formula.

Card	Arguments	Default	Range	Description
HIDING_EXPOSURE_COEFFICIENT	real	1.0		Sets the hiding and exposure coefficient.

Table 4-44. CMS-Flow card used for setting the hiding and exposure coefficient.

CMS-Flow Numerical Methods

Temporal Solution Scheme

This refers to the temporal discritization of the hydrodynamic, sediment and salinity transThe most overlooked advantage of owning a computer is that if they foul up there is no law against whacking them around a little. - Joe Martin

port equations. There are two options in CMS: Implicit and Explicit. The implicit scheme uses a time step on the order of 5-15 minutes and is designed for tidal flow, and mid-term morphology change. The explicit scheme uses a time step on the order of 0.5-1.0 seconds and is appropriate for cases that vary quickly in time such as flooding or barrier island breaching.

Card	Arguments	Default	Range	Description
SOLUTION_SCHEME	character	EXPLICIT	EXPLICIT IMPLICIT	Determines the solution scheme used in CMS-Flow.
IMPLICIT_WEIGHTING_FACTOR	real	0.0	>=0.0, <=1.0	Weighting factor in implicit tem- poral scheme. 0 – First order, 1- second order. For more details on the temporal solution scheme see the <u>Temporal Discretization</u> sec- tion.

Table 4-45. CMS-Flow cards related to the surface roller

Imporant Note:

• The second order solution scheme requires three time step levels. Therefore, for the first time step, the model uses the first order twolevel temporal scheme.

Matrix Solver Options

The four different solvers implemented in the implicit solution scheme are the Gauss-Seidel, Gauss-Seidel with Successive-Over-Relaxation, BICGSTAB, and GMRES. The same solver is applied to flow, sediment and salinity. The default solver is the GMRES. The solver may be changed using the advanced card in Table 4-45 below.

Card	Arguments	Default	Range	Description
MATRIX_SOLVER	character	GMRES	EIDEL GAUSS- OR B GMRES	Selects the matrix solver for flow, sediment and salinity.
HYDRO_MAX_ITERATIONS	integer	Function of grid size	>0	Sets the maximum num- ber of iterations for the flow (hydro) solver (outer loop).
PRESSURE_ITERATIONS	integer	Depends on Solver	>0	Sets the number of solver iterations for the pressure equation (inner loop).
VELOCITY_ITERATIONS	integer	Depends on Solver	>0	Sets the number of solver iterations for the velocity or momentum equations (inner loop).
SEDIMENT_MAX_ITERATIONS	integer	20	>1	Maximum number of iterations (outer loop) for the sediment transport
SALINITY_MAX_ITERATIONS	integer	20	>1	Maximum number of iterations (outer loop) for the salinity transport

Table 4-46. CMS-FI	low cards related	I to the matrix solver.

Advection Schemes

As in the case of the implicit solution scheme, the same advection scheme is applied for the flow, sediment and salinity transport equations. There are three choices for advection schemes with upwinding in the implicit model: hybrid, exponential and HLPA. The hybrid scheme is fast but is the most diffusive. The exponential scheme is based on the 1D analytical solution to an advection-diffusion equation and produces very stable results. The HLPA is very stable and non-diffusive, but requires slightly more computational time. For most applications, the exponential scheme is recommended and is set as the default. The advection scheme may be change using the advanced card

Card	Arguments	Default	Range	Description
ADVECTION_SCHEME	character	POWERLAW	NONE HYBRID POWERLAW EXPONENTIAL HLPA GAMMA CUBISTA ALVSMART HOAB	Sets the advection scheme for flow, sediment and salinity.

Table 4-47	7. CMS-Flow	cards related	d to numerical	methods
		ourus relatet		moulous

Wetting and Drying

In CMS, a minimum depth is required for cells to be considered. A cell is classified as wet if the total water depth is larger than this depth. Cell faces are either classified as either open if the two cells neighboring cells are wet or otherwise closed (i.e. cell faces are not classified as wet or dry), in order to improve stability.

Card	Arguments	Default	Options	Description
DRYING_DEPTH	real	0.05	none	Sets the minimum depth for wet cells.
WATER_PONDING	character	OFF	ON OFF	Turns <i>On</i> or <i>Off</i> water ponding. If water ponding is <i>Off</i> , isolated bodies of water will become dry.
ONE_CELL_WIDE_CHANNELS	character	ON	ON OFF	Limits wetting and drying to areas with at least 3 cells wide. When turned off, the model stability is im- proved.

Table 4-48. CMS-Flow cards related to wetting and drying.

Parallelization

The CMS-Flow is parallelized for PC's with multi-core processors using OpenMP. The parallelization works by splitting the computational work into "threads" among several cores. Some cores are hyperthreaded, meaning a single core may support two threads. The number of threads is specified in the *CMS-Flow Model Control Wind*ow. The number of threads must be equal or greater to 1 and cannot be larger than the number of threads available on the machine. If a number is specified which is larger than the maximum number available on the machine, then the code will default to the maximum number available.

Card	Arguments	Default	Description
NUM_THREADS	integer		Determines the number of threads used for parallel processing.

Imporant Note:

• The OpenMP parallelization requires that compatibility OpenMP run-time library (libiomp5md.dll) be in search paths.

Hot Start

The term "hot start" refers to starting a simulation with an initial condition other zero (cold start). Hot starts are used for specifying initial conditions or restarting simulations at intermediate times. The hot start controls are set in the *Flow* tab of the *CMS-Flow Model Control* window.

Hot Start File

The CMS hot start feature CMS lets the user restart simulations that have been stopped due to electric outages, hardware malfunctions, or model crashes. In the case of a model crash the user, may restart the model using larger solver iterations and/or time steps to stabilize the simulation. The user has the option to specify a hot start output time or an interval for outputting a recurring hot start file. Every time the hot start file is written, it overwrites the previous information. The CMS Hot Start file saves information on the water elevation (pressure), and current velocities. If the sediment transport is active, the water depth and sediment concentrations are also saved for each size class. The CMS hot start file is a binary XMDF file, has the name Hot_Start.h5 and is saved in the directory of the CMS-Flow files. Figure 4-37 shows the structure of the hot start file. After saving a CMS Hot Start file, it is a good idea to rename the file with a different name before using it as an initial conditions file. This way, the file will not be overwritten in future simulations.

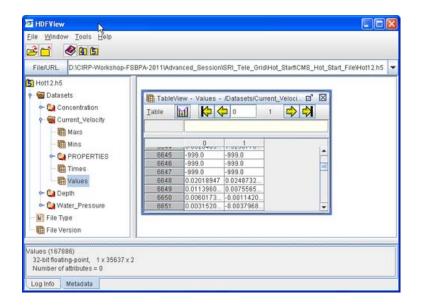


Figure 4-37. HDFView showing the structure of the CMS Hot Start File.

Card	Arguments	Default	Range	Description
HOT_START_OUTPUT_FILE	character	none	none	Julian hour.
HOT_START_TIME	real	none	none	Sets the hot start output time.
AUTO_HOT_START_INTERVAL	real	none		Sets the recurring hot start output time.

Table 4-50. CMS-Flow cards used to specify the hot start output file.

Initial Conditions File

There are several situations where it is convenient to specify a user defined initial condition (hot start) file. For example, if the user forgets to setup the model output a hot start file or when running idealized cases with known initial conditions. A hot start file can easily be created and exported by the user from the SMS interface. The model requires at water levels, current velocities, concentrations, and water depths. Any datasets that are missing from the initial file are assigned a default value which depends on the dataset. If the water level or current velocities are not specified, they are set to zero. If the depth is not specified, then it is set to the input grid depth. If the sediment concentrations. It is important to note that the names and paths of the initial condition datasets are important.

Variable	Path and Name
Water surface elevation	Datasets\Water_Elevation
Current velocity	Datasets\Current_Velocity
Sediment concentrations	Datasets\Concentration
Salinity concentrations	Datasets\Salinity

 Table 4-51. Path and name for initial condition file variables.

The steps for creating a user defined hot start or initial condition file from a CMS-Flow solution file are outlined below.

- 1. Import CMS-Flow grid and solution file.
- 2. Sample a time step of the solution datasets for use in the initial condition
 - 1. Click on Data | Data Calculator
 - 1. Under the *Tools* section, select *Sample time steps*.
 - 2. Under the *Datasets* section, click on the *Water Elevation*
- 3. Export the initial condition datasets to an XMDF file

ools	Sample time steps	
Math Compare datasets Data Calculator Temporal Conversion Computer derivative Conversion Scalar to Vector Vector to Scalar Map activity Filter	Data Sets	Time Steps 10957 00:00:00 10957 00:00:00 10957 00:00:00 10957 00:00:00 10957 00:00:00 10957 00:00:00 10957 00:00:00 10957 00:00:00 Set As Start Set As Start
Update Available Tools	Data Set Info Output dataset name: vel	Interpolate times

Figure 4-38. Dataset Toolbox showing a time step sample of the water elevation and current velocity datasets for use in a hot start (initial condition) file.

Flow_Shark		SMS 11.0 64-bit Development - [u	
123 D50		A File Edit Display Data Cellstring Ch	15-FLOW Web Winds
122 Hard Botton	E Flow_Shark	🕑 🖬 🗇 🏦 🖻 🔍 💈 🛵 🗙	2
123 ManningsN	123 D50	(come	t Data Set 🛛 🚺
[2] Depth	122 Hard Bottom	Flow_Shark	
SRI_Base	123 ManningsN	123 D50	
23 Capacity	[2] Depth	122 Hard Bottom	Туре
123 Concerv	SRI_Base		XMDF file
22 Current_	123 Capacity	[7] Denth	
一般 Depth	123 Concentra	SRI_Bate	Compress
Eddy_Vi	123 Current_M	122) Capacity	
123 Morphol	123 Depth	Time	e Steps
Water_£	123 Eddy_Visc		Current time step
Wave_H	123 Morpholog		All time steps
- 123 Wave_F	122 Water_Ele	122 Eddy_Viscosky	
- to Cuttent_	123 Wave_He	122 Morphology_Cha Filer	ane
Total_S	123 Wave_Pe	123 Water_Elevation	D:\CIRP-WorkshopWyHotStat6.h5
Wave_H	D Current_V	123 Wave_Height	D. VLINP-Workshop WyHorstans.ns
t23 wse	Total_Sed	123 Wave_Period	
Te vel	Wave_He	D Current_Velocity	
Map Data	Water_Elev-	Total_Sedment_	p Save Cancel
	Current_Vet	Vave_Height_Vec	hc.
	🖻 🔽 🦝 Map Data	122 Wates_Elevation	
	<	Current_Veloc Delete	
		- Map Data Explicit D	atasets
			s and reference
		1 H H 🖬 🗲 🔵 🎌 🖢 🥂	A .
	4.		

Figure 4-39. Dataset Toolbox showing a time step sample of the water elevation and current velocity datasets for use in a hot start (initial condition) file.

Card	Arguments	Default	Range	Description
INITIAL_STARTUP_FILE	character	none		Julian data in YYDDD with YY being last two digits of the year, and DDD the Julian day of the year.

Table 4-52. CMS-Flow card for specifying the initial condition file.

CMS-Flow Output

Global Output

Global output refers to the variables that are output on every active cell on the grid. The global output options are specified in *Output* tab of the *CMS-Flow Model Control* window. More information on the global output variables, groups and CMS-Flow cards is provided in the sections below.

Output Times 1			Туре	Dataset	
Output Times 2 Output Times 3			Water surface elevation	Output Times 1	
Output Times 4			Velocity	Output Times 1	
lutput Times:			Morphology	Output Times 3	
			Transport	Output Times 2	-
Start time (hrs)		And in the local data was a feature of the local data was a fe	Waves	Output Times 3	
0.0	3.0	336.0	Eddy viscosity	None	
			Simulation labet	Simulation	
Delete			Simulation labet	Simulation	
			Simulation labet	Simulation	

Figure 4-40. Output tab in SMS 11.0

Global Output Datasets

Global output datasets are divided into groups and each group is assigned an output times, and file. A description of the various output datasets and the associated groups is provided in Table 4-52.

Output Dataset	Group	Description	Units
Current_Velocity	Velocity	Depth-averaged and cell-centered current velocity vector dataset and with respect to local grid coordi- nates	m/s
Current_Magnitude	Velocity	Depth-averaged and cell-centered current velocity magnitude dataset	m/s
Water_Elevation	Water surface elevaation	Cell-centered water surface eleva- tion	m
Eddy_Viscosity	Eddy viscosity	Cell-centered horizontal eddy vis- cosity	m^2/s
Concentration	Transport	epth-averaged and cell-centered sediment concentration	kg/m^3
Capacity	Transport	Depth-averaged and cell-centered sediment concentration capacity	kg/m^3
Total_Sediment_Transport	Transport	Depth-averaged and cell-centered total-load sediment transport	kg/m/s
Salinity	Transport	Depth-averaged and cell-centered sediment concentration capacity	kg/m^3
Depth	Morphology	Cell-centered still water depth	m
Morphology_Change	Morphology	Cell-centered morphology (bed)	
Wave_Height	Waves	Cell-centered significant wave height	m
Wave_Height_Vec	Waves	Cell-centered significant wave height vector	
Wave_Period	Waves	Cell-centered peak wave period	s

Table 4-53. CMS-Flow cards related to the output datasets.

Output Time Series and Lists

The times at which each group is output is determined by the selecting one of four user defined output time series or lists. In SMS versions 10.1 and earlier, the output time series were used. However, because the output time series can become very large for long-term simulations, the time series have been replaced by lists in which the output times are specifying a list of starting, ending and increments. This option is more compact and also makes it easier to manually change the output options in the cmcards file.

Card	Aguments/Format	Default value	Description
------	-----------------	------------------	-------------

TIME_SERIES_1	[length of list 1] [output times for list 1]	0	Output time series for list 1 in hours.
TIME_SERIES_2	[length of list 2] [output times for list 2]	0	Output time series for list 2 in hours.
TIME_SERIES_3	[length of list 3] [output times for list 3]	0	Output time series for list 3 in hours.
TIME_SERIES_4	[length of list 4] [output times for list 4]	0	Output time series for list 4 in hours.
TIME_LIST_1	[number of sublists] [sublist 1: start, end, increment] [sublist 2: start, end, increment]	0	Sublist(s) for output time series 1. For each sublist, the arguments are starting time, end time and increment in hours.
TIME_LIST_2	[number of sublist] [sublist 1: start, end, increment] [sublist 2: start, end, increment]	0	Sublist(s) for output time series 2. For each sublist, the arguments are starting time, end time and increment in hours.
TIME_LIST_3	[number of sublist] [sublist 1: start, end, increment] [sublist 2: start, end, increment]	0	Sublist(s) for output time series 3. For each sublist, the arguments are starting time, end time and increment in hours.
TIME_LIST_4	[number of sublist] [sublist 1: start, end, increment] [sublist 2: start, end, increment]	0	Sublist(s) for output time series 4. For each sublist, the arguments are starting time, end time and increment in hours
WSE_OUT_TIMES_LIST	integer	0	Output time series id for water surface elevation in m.
VEL_OUT_TIMES_LIST	integer	0	Output time series id for current velocity and magnitude in m/sec.
MORPH_OUT_TIMES_LIST	integer	0	Output time series id for evolving bed and bed change in m.
TRANS_OUT_TIMES_LIST	integer	0	Output time series id for sediment con- centration, capacity and salinity concen- tration in kg/m^3 and sediment transport rates in m^2/sec.
WAVE_OUT_TIMES_LIST	integer	0	Output time series id for wave height in m, wave period in sec, and wave height vector in m.
EDDY_VISCOSITY_OUT_TIMES_LIST	integer	0	Output time series id for horizontal eddy viscosity in m^2/sec .

Output Group File Specification

For large grids or long simulations, outputting all of the variables to a single XMDF solution file can lead to a file that is unmanageable. To help reduce to the size of the output files each variable group listed in Table 54 can be output into separate files. The table below lists and describes the CMS-Flow cards used to specify the output file names for each variable group.

Card	Arguments	Default	Description
WSE_OUT_FILE	character	none	Specifies the XMDF output file name for the water level group
VEL_OUT_FILE	character	none	Specifies the XMDF output file name for the current velocity group
EDDY_VISCOSITY_OUT_FILE	character	none	Specifies the XMDF output file name for the eddy vicosity group
VISC_OUT_FILE	character	none	Specifies the XMDF output file name for the eddy vicosity group (same as card above)
TRANS_OUT_FILE	character	none	Specifies the XMDF output file name for the transport group
MORPH_OUT_FILE	character	none	Specifies the XMDF output file name for the morphology change group
WIND_OUT_FILE	character	none	Specifies the XMDF output file name for the wind group

Table 4-55. Variable group output file name specification.

Advanced Global Output

In addition to the variables specified in the SMS interface, CMS has the option to output advanced mode output including the bed shear stress, bed composition, wind speed, etc.

Table 4-56.	Advanced	output	datasets.
-------------	----------	--------	-----------

Card	Arguments	Default	Description
WIND_OUT_TIMES_LIST	integer	0	Output time series id for wind velocity and magnitude in m/s.
STRESS_OUT_TIMES_LIST	integer	0	Output time series id for mean bed shear stress in Pa.
WAVE_OUTPUT_DETAILS	ON OFF	OFF	Outputs additional wave variables including wave direction, radiation stresses, breaking dissipation and roller energy.

XMDF File Compression

The standard CMS-Flow output is written to an XMDF file with the name <Case Name>_sol.h5. The binary file may be written in compressed format using the card described in Table 4-56.

Card	Arguments	Default	Description
XMDF_COMPRESSION	ON OFF	OFF	Compresses the XMDF file

Table 4-57. CMS-Flow card for compressing the XMDF output file

Observation Cells (Save Points)

Time series at selected *Obervation* cells is set in the *Cells* tab of the *CMS-Flow Model Control* window. A description of CMS-Flow cards used for specifying *Observational* cells are described below.

Flow Sediment Salinity Tidal Wind/Wave Ou Times Series Observation Output	tput Cells Input Advanc	ed
✓ U velocity		
V velocity		
Water surface (ETA)		
Contraction of the second s		
Output interval: 900 sec		
Flow Rate Observation Output		
☐ × direction		
T Y direction		
Output interval: 1800 sec		
Transport Observation Output		
I × direction		
I ✓ direction		
Output interval: 900 sec		
1		

Figure 4-41. Cells tab in SMS 11.0

Card	Arguments	Description
TIME_SERIES_INCREMENT		Sets the output time increment for the <i>Time series Observation</i> points.
ELEV_OBS_CELLS_BEGIN	none	Marks the beginning of a <i>Times series</i> <i>Observation</i> point list.

Table 4-58. CMS-Flow card for compressing the XMDF output file

ELEV_OBS_CELLS_END	none	Marks the end of a <i>Times series Obser-vation</i> point list.
FLOW_RATE_INCREMENT	real	Sets the output time increment for the <i>Flow rate Observation</i> points.
FLOW_OBS_CELLS_BEGIN	none	Marks the beginning of a <i>Flow rate Ob-</i> <i>servation</i> point list.
FLOW_OBS_CELLS_END	none	Marks the end of a <i>Flow rate Observa-</i> <i>tion</i> point list.
Q_TRANS_INCREMENT	real	Sets the output time increment for the <i>Flow rate Observation</i> points.
Q_TRANS_OBS_CELLS_BEGIN	none	Marks the beginning of a <i>Transport Ob-</i> <i>servation</i> point list.
Q_TRANS_OBS_CELLS_BEGIN	none	Marks the end of a <i>Transport Observa-</i> <i>tion</i> point list.

Simulation Statistics

CMS V4.0 has the option to calculate statistics over the whole model domain for a user-specified time period. This option is accessed using the advanced cards. The starting time, end time, and time interval should be specified in hours with respect to the model start time. The time interval should be larger or equal to the hydrodynamic time step. When activated the statistics are written to the XMDF Global Solution File in a subfolder named *stats*. The CMS-Flow cards related to the statistics are described below.

Card	Arguments	Description
GLOBAL_STATISTICS	[start time] [end time] [interval]	Turns on the statistics for hydrodynamcis, sediment transport, and salinity.
FLOW_STATISTICS	[start time] [end time] [interval]	Turns on the statistics for hydrodynamics transport.
SEDIMENT_STATISTICS	[start time] [end time] [interval]	Turns on the statistics se- diment transport.
SALINITY_STATISTICS	[start time] [end time] [interval]	Turns on the statistics for salinity.

 Table 4-59. CMS-Flow cards related to output statistics

Important Notes:

- 1. The units of the starting time, end time, and interval are hours.
- 2. If the interval is not specified, the initial time step is used as the interval.

A description of the hydrodynamic, sediment, salinity statistics is provided in the tables below.

Statistic Name	Dataset	Description
Maximum Current Veloc- ity Vector	Current_Max	Maximum current velocity vector in m/s. Can be either negative or positive.
Maximum Current Veloc- ity Magnitude	Current_Max_Mag	Maximum current velocity magnitude in m/s.
Maximum Water Level	Water_Level_Max	Maximum water level in m.
Residual Curent Velocity Vector	Current_Velocity	Average current velocity vector in m/s.
Residual Current Velocity Magnitude	Current_Velocity_Mag	Average current velocity magnitude in m/s.
Hydroperiod	Hydroperiod	Fraction of time a computational cell is wet (i.e. 0-never dry, 1-always wet).
Maximum water level gradient magnitude	WSE_Grad_Max_Mag	Maximum water level gradient magni- tude in m/m.
Maximum current veloci- ty gradient magnitude	Cur_Grad_Max_Mag	Maximum current velocity gradient
Average <i>x</i> -Velocity Nor- malized L-2 Norm	Vx_Norm_Res	Average normalized L-2 norm of the momentum equation in the <i>x</i> -direction
Average <i>y</i> -Velocity Nor- malized L-2 Norm	Vy_Norm_Res	Average normalized L-2 norm of the momentum equation in the <i>y</i> -direction
Average Pressure Noma- lized L-2 Norm	Pres_Norm_Res	Average normalized L-2 norm of the pressure correction equation. The pressure is in units of m^2/s^2 .

Table 4-60. Hydrodynamic Statistics

Statistic Name	Dataset	Description
Maximum Total-load Se- diment Transport Rate vector	Sed_Transp_Max	Maximum total-load sediment trans- port rate vector in units of kg/m/s. Can be either negative or positive.
Maximum Total-load Se- diment Transport Rate M agnitude	Sed_Transp_Max_Mag	Maximum total-load sediment trans- port rate magnitude in units of kg/m/s.
Net Total-load Sediment	Sed_Transp_Net	Net total-load sediment transport rate

Transport Rate Magni- tude		vector in units of kg/m/s. Can be either negative or positive.
Net Total-load Sediment Transport Rate Magni- tude	Sed_Transp_Net_Mag	Net total-load sediment transport rate magnitude in units of kg/m/s.
Gross Total-load Sedi- ment Transport Rate Magnitude	Sed_Transp_Gross	Gross total-load sediment transport rate vector in units of kg/m/s. Can be either negative or positive.
Gross Total-load Sedi- ment Transport Rate Magnitude	Sed_Transp_Gross_Mag	Gross total-load sediment transport rate magnitude in units of kg/m/s.
Maximum Bed Slope Gradient Magnitude	Bed_Grad_Max_Mag	Maximum gradient of the bed slope in units of m/m.

Table 4-62. Sediment Statistics	Table	4-62.	Sediment	Statistics
---------------------------------	-------	-------	----------	------------

Statistic Name	Dataset	Description
Average Salinity Concen- tration	Salinity_Avg	Average salinity concentration in units of ppt.

ASCII Output Files

In addition to the XMDF output file, CMS-Flow provides the output two types of ASCII output files:

- 1. Tecplot snap shot (*.dat), and history files (*.his)
- 2. SMS Super ASCII files (*.sup, *.xy, *.dat)

The CMS-Flow cards used for outputting these two types of files are described in Table 4-62.

Table 4-63. CMS-Flow cards used to output Tecplot and SMS Super ASCII files	

Card	Arguments	Default	Description
GLOBAL_TECPLOT_FILES	ON OFF	OFF	Outputs Tecplot ASCII files
GLOBAL_SUPER_FILES	ON OFF	OFF	Outputs Super ASCII files

Coupling of CMS-Flow and CMS-Wave

Steering refers to the coupling process between CMS-Flow and CMS-Wave. In CMS-Flow versions v3.75 and older (explicit CMS-Flow), the steering was done by the SMS interface. The new inline CMS contains both CMS-Flow and CMS-Wave and performs the coupling process internally. In either, the steering process is similar. First the wave model is run twice at time zero to the first steering interval. The wave information is then interpolated on to the flow grid and the flow model is run from time zero to the first steering interval. The flow information is then interpolated on the wave grid and the wave model is run for the second steering interval and the process is repeated until the simulation is complete.

Before running steering, it is a good idea to test the CMS-Flow and CMS-Wave separately to make sure there are no problems with their grids, or input parameters. Once the CMS-Flow and CMS-Wave models have been setup properly and loaded in SMS, the steering can be initiated.

Important Notes:

- 1. For both the SMS steering and inline steering, the CMS-Wave input spectra need to be spaced at regular time intervals and begin at the same time as the CMS-Flow model.
- 2. The way variables are interpolated and extrapolated both in space and time are slightly different between the SMS steering and inline steering versions of CMS.
- 3. Currently, the inline version of CMS only contains the implicit CMS-Flow solution scheme. Therefore, if the user decides to switch from explicit to implicit solvers, the user must also use different executables.
- 4. The wave grid for most inlet and coastal cases will be not much longer alongshore than the flow model. If the wave model does not extend far enough, there are model parameters to smoothly interpolate the wave data to some distance alongshore in the flow model.
- 5. Because the grid boundary is often the location of a wave buoy, the cross-shore domain tends to extend further.
- 6. In some cases the best IJ location for the half-plane model may not be apparent, especially for open coasts. Often the degree of energy

in the open ocean is dominantly from one direction or the other, and the i-direction should be aligned to that direction.

CMS Versions 4.0 and newer the steering process is done internally by the CMS. This means that that both CMS-Flow and CMS-Wave are contained within a single code or executable. Even though CMS-Flow and CMS-Wave use different grids, the two models are in a single code which facilitates the model coupling and speeds up the computation by avoiding communication files, variable allocation and model initialization at every steering interval. The inline CMS can be launched from the SMS Steering Wizard or as a command line with arguments specifying the input files and steering options. The table below describes the CMS-Flow cards used for the steering process in the inline CMS.

Card	Arguments	Default	Range	Description
CMS-WAVE_SIM_FILE	character	none	none	File name including path for the CMS-Wave sim file.
WAVE_SIM_FILE	character	none	none	Same as CMS- WAVE_SIM_FILE.
STEERING_INTERVAL	real	none	none	Sets the recurring hot start output time.
WAVE_WATER_LEVEL	character	TIDAL_PLUS_VARIATION	LAST TIDAL TIDAL_PLUS_VARIATION	Determines the method used to calculate the wa- ter levels passed to the wave model.
FLOW_EXTRAPOLATION_DISTANCE	real	Calculated based on grid geometry	none	Determines the extrapo- lation distance used for flow variables on the wave grid.
WAVE_EXTRAPOLATION_DISTANCE	real	Calculated based on grid geometry	none	Determines the extrapo- lation distance used for wave variables on the flow grid.

Table 4-64. CMS-Flow cards related to steering

Interpolation Files

When running the inline CMS with flow and waves, the CMS steering module write out two files named:

- Intpcoef_flwav.bin
- Intpcoef_wavfl.bin

These files contain the interpolation information between the CMS-Flow and CMS-Wave grids. Because calculating the interpolation infomration can take several minutes, saving this information in files allows the model to quickly read this information and avoid their computation for subsequent runs when using the same CMS-Flow and CMS-Wave grids. When the model is restarted it will automatically detect these files and read them if the grids are the same size. If changes have been made to the grids but the grid size is the same, the steering module will not be able to detect the changes and the interpolation information will be incorrect. Therefore, it is recommended to delete the interpolation files every time a change is made the either the CMS-Flow or CMS-wave grid. In the future, this problem will be avoided by writing a counter to the CMS-Flow and CMS-Wave files every time a change is made to them from the interface.

Running the CMS

CMS-Flow Input Files

File	Description		
Card File	File name including path for the CMS-Wave sim file.		
XMDF Grid File	Same as CMS-WAVE_SIM_FILE.		
XMDF Model Parameters File	Sets the recurring hot start output time.		
Telescoping Grid File	Determines the method used to calculate the water levels passed to the wave model.		
User-defined datasets	Determines the extrapolation distance used for flow variables on the wave grid.		

Table 4-65. Input Files for CMS-Flow

Control (Card) File

Control files are used for specifying input parameters, options, and boundary conditions, initial conditions and forcing. In CMS-Flow the Control File is the *.cmcards (card) file. The ASCII file uses a simple card format to specify model input in free format. Data Input Files depend on the specific model setup, and may include but are not limited to spatially variable

堡 TextPad - C: \PhD\Bench_Cases\SpurDike\SpurDik	e_Tel\V5R9\Flow_SpurD 🔳 🗖 🔀
File Edit Search View Tools Macros Configure	Window Help
🔁 🖆 🗐 🗿 🖉 💽 🐰 🖻 🕄 오 오 🚍 🗉	🗊 🗁 ¶ 🔇 🌮 🛃 🚱 👁 🗘 🚆
B Flow_SpurDike.cmcards	▼ ×
7 !Grid Geometry 8 BATHYMETRY_DATASET 9 GRID_ANGLE 10 GRID_ORIGIN_X 11 GRID_ORIGIN_X 11 GRID_ORIGIN_Y 12 CELL_LATITUDES 13 GRID_CELL_TYPES 14 15 !General Parameters 14 USE ADMENTION TEDES	"Flow_SpurDike_grid.h5" 0.0 -2.32 -0.01 "Flow_SpurDike_mp.h5" "N "Flow_Dike/Grid 5/PROPEF
10 USE_MUXING_TERMS 17 USE_MUXING_TERMS 18 USE_WALL_FRICTION_TERMS 19 DRVING_DEPTH 20 SINULATION_LABEL 21 2D_MODE 22 NUM_THREADS	ON ON 0.05 "Simulation" ON 2
23 24 !Timing 25 HYDRO_TIMESTEP 26 STARTING_JDATE 27 STARTING_JDATE_HOUR 28 DURATION_RUN 29 DURATION_RAMP 30	300.0 01001 0 3.0 0.083333333333
21 IUot Ctant	>
For Help, press F1	1 1 Read Ovr Block

Figure 4-42. CMS-Flow Control (card) File viewed in TextPad.

SMS Steering Module

The inline CMS can be launched from the SMS 11.0 Steering Module in a similar way to previous versions of CMS. The steps for launching the inline CMS (versions 4.0 and higher) are outlined below.

- Make sure both the CMS-Flow and CMS-Wave grids are loaded in SMS.
- Check the CMS executable file name under the SMS preferences menu (see Figure 4-43).
 - 1. Click on Edit / Preferences.
 - 2. Under the *File Locations* tab, in the section called *Model Executables* check the file names for CMS-Flow and CMS-Wave and make sure they are consistent with the latest releases (<u>http://cirp.usace.army.mil/products/index.html</u> CIRP Products).

Select All Select With Poly	Del Ctrl+A	- 1	Time General Images F Model Executables	Map Graphics Re Locations Project Explorer To	obas
Select By			Model	Executable	-
			ADCIRC	c\program files\sms 10.1\models\adci	
Projection			BOUSS-1D	c:\program files\sms 10.1\nodels\bou	
Reproject			BOUSS-2D	=\program files\smt 10.1\models\bou	
			CGWAVE	c:\program files\sms 10.1\models\cgw	
Single Point Projection.	*		CMS-Flow	C:\Program Files\SMS 10.1\models\CMS	model
Time Settings			CMS-Wave	C:\Program Files\SMS 10.10nodels\C	
nine secongs			FESWMS	c:\program files\sms 10.1\nodels\fst2	
Materials Data		Genesic		BROWSE	
			GFGEN	c:\program files\sms 10.1\models\gfge	
Project Metadata			NE Pacific Tidal Database	BROWSE	
Copy To Clipboard	Ctrl+C		Other Files		
Paste Tabular Data Ctrl+V		File	Location	~	
	19-1780/2016		LATLON conversion files	c:\program files\sms 10.1\lation\	
Preferences			LeProvost tidal database	C.\Phogram Files\SMS 10.1\Jeprovost\	
13		-	North Amows Path	c \program files\sms 10.1\WorthArrows\	~

Figure 4-43. Changing the CMS-Flow model executable.

- Set the steering information in the Advanced Cards
 - 1. Click on CMS-Flow | Model Control...
 - 2. Enter the steering interval and CMS-Wave *.sim file using the cards described in the table above. Note that the full path to the *.sim file must be provided within quotation marks.



Figure 4-44. Setting the CMS steering information.

- Start Steering Module
 - 1. Click on Data | Steering Module.
 - 2. In the *SMS Steering Wizard* select the *CMS INLINE* option and click on the *Next>* button.

3. Enter the *Steering Interval* under the *Time* section and and click on the *Start* button.

Notes:

- 1. When Running the inline CMS from SMS, it is not necessary to specify the CMS-Wave Sim File or Steering Interval in the advanced cards section.
- 2. Steering options besides the CMS-Wave Sim File and Steering Interval such as the extrapolation distances need to be specified in the Advanced Cards

SMS CMS-Flow Menu

The second option for launching CMS versions 4.0 and newer is by entering the steering information in the cmcards file and simply running from the SMS CMS-Flow menu. The steps are outlined below.

- Make sure both the CMS-Flow and CMS-Wave grids are loaded in SMS.
- Check the CMS executable file name under the SMS preferences menu.
 - 1. Click on *Edit | Preferences*.
 - 2. Under the *File Locations* tab, in the section called *Model Executables* check the file names for CMS-Flow and CMS-Wave and make sure they are consistent with the latest releases (<u>http://cirp.usace.army.mil/products/index.html</u> CIRP Products).

Delete Del Select All Ctrl+A	Time Count I I Invest			
Select With Poly	Model Executables	e cocatora Project Explorer 1	oobari	
Select By	Model	Executable	-	
	ADCIRC	c:\program files\sms 10.1\models\adci.		
Projection	BOUSS-1D	c:\program files\sms 10.1\nodels\bou		
Reproject	BOUSS-2D	=\program files\sms 10.1\nodels\bou		
	CGWAVE	c:\program files\sms 10.1\models\cgw		
Single Point Projection	CMS-Flow	C:\Program Files\SMS 10.1\models\CMS	mode	
Time Settings	CMS-Wave	C:\Program Files\SMS 10.10nodels\C		
Time Secongs	FESWMS	c:\program files\sms 10.1\models\Jst2	8	
Materials Data	Genesic	BROWSE		
Materials Data	GFGEN	c:\program files\sms 10.1\models\gfge		
Project Metadata	NE Pacific Tidal Database	BROWSE		
Copy To Clipboard Ctrl+C	Other Files			
Paste Tabular Data Ctrl+V	File	Location	^	
	LATLON conversion files	c:\program/files\sms 10.1\lation\		
Preferences	LePiovost tidal database	C:\Program Files\SMS 10.1\Jeprovost\		
6	North Amows Path	c \program files\sms 10.1\NorthAnows\	1	
			100	

Figure 4-45. Changing the CMS-Flow model executable.

- Start CMS from the CMS-FLOW Menu
 - 1. Click on CMS-FLOW | Run
 - 2. In the *SMS Steering Wizard* select the *CMS INLINE* option and click on the *Next>* button.
 - 3. Enter the *Steering Interval* under the *Time* section and and click on the *Start* button.

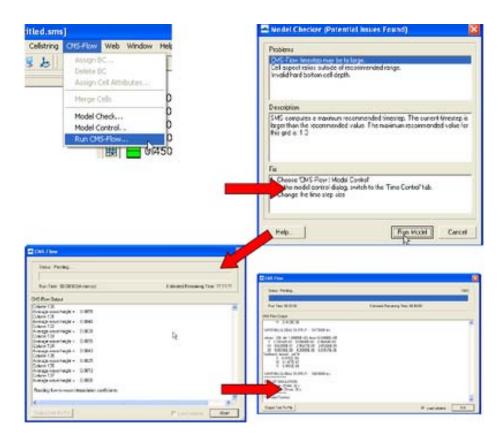


Figure 4-46. Example of launching the CMS from the CMS-Flow menu.

Standalone Program

Standalone refers to the fact that the CMS executable is not part of a larger software package nor does it require a network connection, and support or services of the operating system or other software. If the CMS were run from the SMS it would not be considered a standalone program.

Because the inline CMS does all of the steering internally, it is a standalone program and there is really no need for CMS to be launched from SMS. Running CMS outside of SMS is useful because it allows the user to launch CMS from script files and also to pause the model for checking model results during the model simulation without causing access errors. When running several models, pausing the some of them will free up some of the computer to do other tasks such as plotting and checking model results. Running CMS outside of the SMS, also avoids the extra memory and work requirements from the interface. There are three mean approaches for running CMS as a standalone program

- 1. From a command prompt
- 2. Double-click on the CMS executable or shortcut to the executable.
- 3. Drag-and-drop the CMS input files on the CMS executable or shortcut to the executable.

Important Notes:

- 1. For advanced users, it is recommended to put a copy of the CMS executable in the project directory and running the CMS from a command prompt. This keeps a record of the executable used for the project, facilitates making and transferring script files for running multiple project alternatives and keeps the window open after the model has completed or even crashed.
- 2. To pause the simulation, press the "Pause/Break" button on your keyboard or press and hold the "Ctl" key and press the "S" key.
- 3. To stop the model simulation, press and hold the "Ctrl" key and press the "C" key.

Command Prompt

The first step is to open a command prompt. There are two ways of doing this:

The first method for opening a command prompt is

1. Click on Windows Start | Accessories | Command Prompt

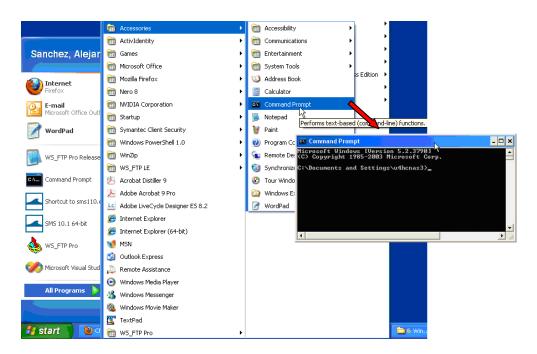


Figure 4-47. Example of launching the inline CMS-Flow steering run.

The second method for opening a command prompt

- 1. Click on Windows Start menu then the Run... utility
- 2. In the Run window, enter the command cmd and click OK

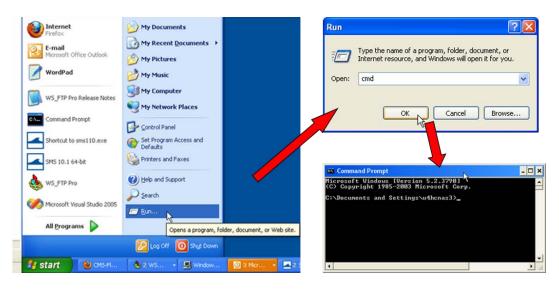


Figure 4-48. Example of launching the inline CMS-Flow steering run.

Important Note:

• It is recommended to put a shortcut to the Command Prompt on the desktop to more easily open the Command Prompt.

Once the command prompt is open the CMS can be launched using one of the following syntax

>> [cms2d_*exe] [.sim or .cmcards file] [.sim or .cmcards file] [steering interval] [wave water level option]

where the steering interval is in hours and the wave water level option is either

- 1. Wave water levels are estimate as the last water levels from the flow model (i.e. WAVE_WATER_LEVEL option equal to LAST)
- 2. Wave water levels are estimated as the mean tidal water level at the wave time step (i.e. WAVE_WATER_LEVEL option EQUAL TO TIDAL).
- 3. Wave water levels are estimated as the mean tidal water level at the wave time step plus the water surface variations estimated from the last flow time step (i.e. WAVE_WATER_LEVEL option EQUAL TO TIDAL_PLUS_VARIATION).

Notes:

- 1. The sim and cmcards files must contain the full or relative path with respect to the executable if different from the executable.
- *2.* If no input arguments are specified, than the user will be prompted to manually enter the name of the CMS-Flow and CMS-Wave files and steering information.
- *3.* If the cmcards file is specified the CMS will check for the steering cards. If the sim file is found, than it will run in steering.
- 4. If no steering interval is specified in the cmcards file or the command line, than a default value of 3.0 hours will be used.
- 5. If no wave water level option is specified in the cmcards file or the command line, than a default method equal to three.
- 6. It is possible to create a short-cut to the model executable and simply drag-and-drop the cmcards file and or sim file with the steering options specified in the cmcards file.

Below are some examples

>> cms2d_v4r10-x32.exe
>> cms2d_v4r10-x32.exe Flow.cmcards
>> cms2d_v4r10-x32.exe Flow.cmcards Wave.sim
>> cms2d_v4r10-x32.exe Wave.sim Flow.cmcards
>> cms2d_v4r10-x32.exe Flow.cmcards Wave.sim 1.0
>> cms2d_v4r10-x32.exe Wave.sim Flow.cmcards 3.0 1

Drag-and-Drop

To launch CMS as a standalone application using the drag-and-drop method:

- 1. Select all of the CMS input files by holding the "Ctrl" key and singleclicking on each input file.
- 2. Drag all of the input files on the CMS executable or shortcut to the executable by holding the left mouse button.
- 3. Drop the the files by letting go of the left mouse buttom.

Note:

• If running steering, make sure all of the steering options are in the cmcards file when using the method.

Double Click

This is one of the easiest ways of running the CMS but also one of the most time consuming because it requires the user to type the name and path (if different from executable) for all of the input files and if necessary the steering options.

- To run the CMS by using the Double-Clik method:
 - 1. Double-click on the executable
 - 2. Follow the instructions on the screen.

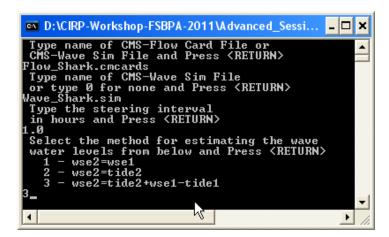


Figure 4-49. Example of launching the inline CMS by double-clicking on the executable.

Note:

• If CMS input files are not in the same folder as the executable, the file names must include the full or relative path with respect to the

Viewing and Post-Processing Results

Calibration of hydrodynamic and morphologic datasets requires use of post-processed data in order to compare to measurements and make incremental changes. This section gives guidance on how to process or extract data from model results, and examples of measured data to compare results with. Of course, the post-processed data can be exported and comparisons can be made in another program, but there are some options within SMS that can help with repetitive testing and comparisons.

Water Levels & Currents

The first stage in calibration of a numerical hydrodynamic model is to accurately represent measured tides (or water levels) and currents. The number of calibration measurement sites required for sufficient model calibration increases with larger domains and increased complexity in processes.

Of the three main data sources required for good hydrodynamic calibration (geomorphic, forcing, and field data), inaccurate knowledge of, or mistakes in conversion between datums is the most common underlying factor in poor model calibration. Model calibration cannot be achieved without proper representation of datums. Some examples of field data typically used for calibration of hydrodynamics include fixed water level gauges, fixed acoustic Doppler velocimeters (ADV) and acoustic Doppler current profilers (ADCP), and roaming or boat-mounted ADCPs. Both fixed and roaming data can be assessed over a time series, where boatmounted data are collected at specified locations over time intervals. However, roaming data that were collected continuously must be assessed as a function of location in three-dimensional space.

For hydrodynamic data, the most common forms of measurements are recorded either temporally at a station, temporally at a fixed spatial extent, or spatially at relatively singular times. For example, a tide gage is stationary, but a horizontal accostic Doppler current meter (H-ADCP) may collect temporal measurements at multiple points. Of course, the multiple locations are depth-averaged, as would be an upward-looking ADCP, in order to compare to the 2D CMS. Similarly, a field campaign of depthaveraged current measurements collected at transects are all contemporaneous (within reason), but there are multiple time periods to compare.

With good forcing data and accurate corresponding datums, the final check before hydrodynamic calibration can be achieved is the accuracy and detail of the geomorphic parameters such as bathymetry, sediment characterization, and structure definition. The most important of these is bathymetry, which can have several issues which are typically associated with quality control, density, interpolation, and final grid resolution and domain size. A good example of this is a poorly resolved small channel in the far reaches of a bay, such as that in the northern portion of the Shark River estuary (Figure 4-50). Although lower velocities may be passing through this channel, and there may be little interest in morphology change here, it may be integral to providing the conduit of tidal prism to a shallow bay platform.

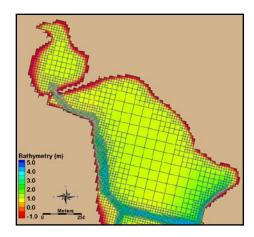


Figure 4-50. Northern portion of the Shark River estuary.

Figure 4-51 shows the closest locations of water-level gauges to Shark River Inlet. Sandy Hook and Atlantic City, NJ, are two ocean pier-mounted gauges approximately 30 and 100 miles away from Shark River Inlet, respectively. Both NOAA gauges were evaluated against the Belmar tide gauge using the tidal constituents of one year, and Sandy Hook was found to have the closest amplitudes and phases. Measured tides from Sandy Hook were used to force the offshore boundary condition. The calibration period that the model was evaluated on was for the 13-hour tidal cycle over which field measurements were collected on 20 August 2009.

Figure 4-51. Location of NOAA (red) and USGS (blue) water level gauges.

Diplay Options

The results of the CMS calculated hydrodynamics can be viewed and compared to measured results in a number of ways. Scalar results are typically in planar view and are illustrated by color representing magnitude, and arrow lengths representing magnitude and direction. Color setting can be manipulated in the overall Display Options, or individually for each dataset.

- 1. Open a solution file for the hydrodynamic output and right click on the *WSE* dataset, select *Display Options*.
- 2. In the *Contours* tab, adjust the color settings and the value range to that in Figure 4-52.

Figure 4-53 illustrates the new color scheme for displaying the water surface elevation.

Display Options		Color Options	
Cartesian Grid General Map	Cartesian Grid Contours Vectors Contour method Color Fill Use Color Ramp Color Ramp	Contour interval Number of Contours	Palette Method User Defined Palettes Solid color New Palette Intensity ramp Delete Palette Hue ramp Load Palettes Oser Defined Color: Y Save Palettes
	Data range Dataset: Default Contourer Options Min: -1.108285784721 Max: 1.191238431931 III Specify a range	1 -1.0 2 -0.9 3 -0.8 4 -0.7 5 -0.6 6 -0.5 7 -0.4	Current Palette
	Min: 11.0 F Fill below Max: 1.0 Fill above	Fill continuous color range Fill inactive cells Transparency: 0 %	Palette Preview-
Show option pages for existing data only	Legend:Options	Bold Options Label Options	Help DK Cancel
Help	All On All Off	OK	Cancel

Figure 4-52. Contour tab settings for color display and value range. Note the blue colors were selected for the visible range.

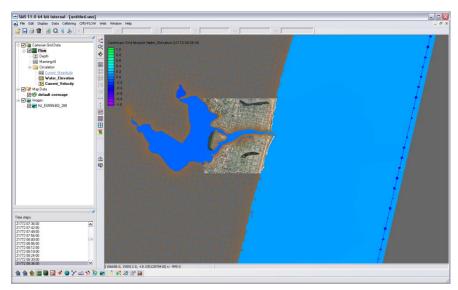


Figure 4-53. Water surface elevation color contours modified.

Currents are automatically given in vector format as the solution files are generated. These can be converted into Vx and Vy components, or into magnitude and direction. If the modeled results are compared to simple magnitude measurements, then the magnitude dataset is appropriate. If the modeled results will be compared to measurements collected in easting and westing, care should be taken to compare the correct derivative of the vector format. Because the vectors are based on the Cartesian grid's orientation, be sure to convert with respect to the axis difference.

- 1. Right click on the current vector dataset and select *Vector to Scalar*. Select Vx and Vy, and this gives the x and y components of the current velocity.
- 2. Next, convert the vector to *Magnitude and Direction*. The color component of the magnitude can be selected along with the vector of the current velocity.
- 3. Open the *Display Options*, and go to the *Vector* tab. Change the vectors to the below settings (Figure 4-54) to view the vectors over a prescribed gridding. (Note that individual vectors at each cell is difficult to visualize for the whole domain and often only useful when zoomed in very close.)

Cartesian Grid General	Cartesian Grid Contours Vectors	r Arrow Options
lap	Display: on a grid	Shaft length: Define min. and max. length
	X spacing: 20 pixels	Minimum: 10 pixels
	Y spacing: 20 pixels	Maximum: 35 pixels Max.
	Z-offset: 10.0	Line width: 1 pixels Min.
	,	Color Range:
		Options
	Arrow Tail 💽 at location	Min. Max. Size: Type:
	Data range: Range 💌	
	Minimum: 0.0	● Scaled to length
	Maximum: 1.5	(a): 15.0 % · · · · ·
Show option pages for existing data only	✓ Legend: Options	(b): 30.0 %

Figure 4-54. Vector Display options set for a gridded display across the domain.

Figure 4-55 shows an example of displaying current magnitudes with color contours and the current direction with vectors.

Figure 4-55. Vectors and color contours set for displaying current magnitude (color) and direction (vectors). Note that the vectors are slightly scaled on this setting to reflect magnitude.

Importing water level measurements into SMS for comparison

To compare the measured data within SMS, the measurements must be brought into the program and into a comparable format. SMS will import a variety of ASCII, columnar data that can be categorized and labeled in a scatter dataset (scatterset).As a simple example of comparing tidal data to calculated tides, the USGS Belmar tide data is given in the folder Hydro\Water Level Calibration in the

Tide_Comparison_AUG09_Workshop.xls file. This is the only tide measurement for Shark River Estuary to compare the bay tidal harmonics. To import this data, it must be brought in as observational data within the *Observation Map Module*.

1. In the Cartesian Module, go to *Display, Plot Wizard*, and select *Time Series Plot*. Select scalar, and the WSE as the dataset. (Note it takes some time to populate a plot in SMS.)

- 2. Change the map module *Default Coverage* type to *Observation*, and add a *Feature Point* is to the approximate location of the tide gauge shown in Figure 4-51.
- 3. Right click on this feature point (**Error! Reference source not found.**), and select attributes.

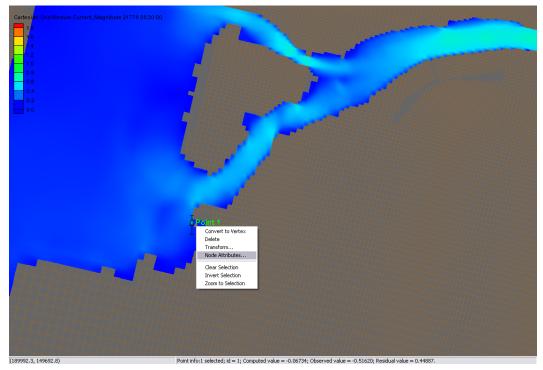


Figure 4-56. Observation point placed at the location of the Belmar tide station.

4. In the *Attributes*, check the Trans box in measurements, and select 2D Cartesian under Module, and the Water_Elevation dataset (Figure 4-57). If your Observe Point is checked, an Options box should appear under the Time Series column. Select this and import the Belmar_Tide.xys file.

Time series of the measured water levels can be manually pasted here. A file of measured water levels is provided and available for *Import*: Belmar Tide Input.tsd.

	urements						/ Series Edito	r				
	Active				Module							
1			lew Measurement		2D cartesia		Time (hours)	Water_Elevation	^	E		
_						1	0.0	-0.604597042		1.0 E		1 Lan
						2	0.1	-0.574116672		0.8		
						3	0.2	-0.552780412		0.6		
	_			_	_	4	0.3	-0.543636301				
	vation Poir					5	0.4	-0.525348079				
15.61	vation Foir	its .				6	0.5	-0.507059856		0.4 0.2 U 0.2 U 0.0		
	Color	Obser	ve Name	×	у	7	0.6	-0.488771634		Ξ ₁ 0.0-		
1			Point 1	189992.0	149698.0	8	0.7	-0.458291263		_10.0 Aate		
			FURCE	103332.0	143636.0	9	0.8	-0.43085893				
-						10	0.9	-0.412570707		-0.4-		
						11	1.0	-0.394282485		-0.6		
						12	1.1	-0.366850151		-0.8	1111 M	111.1.1
						13		-0.342465855		-1.0 ÷.		http://www.com/com/
				-		14		-0.318081558	~			500 600 700
						⊏ s	ihow dates				700 200 300 400 Time	
,	All On	All	Off			н	telp		34°4	Import	Export	OK Cano

Figure 4-57. Input of time series water surface elevation data into an observation point.

Water level data plotting from Feature Points

Time plots can be compared within SMS through their software plotting package. To create a plot:

1. Select *Display*/*Plot Wizard*/*Time* Series and select *Next*. The *Function* is *Scalar*, and the *Water Elevation* scalar dataset should be selected with the full time period (Figure 4-58).

Plot Wizard - Step 2 of 2				X
Function type: Scalar Coverage: default coverage Start time: 21762 00:00:00 End time: 21792 23:48:00 Use calibration data Band Show Points 1 Point 1	 Use active dataset Use selected datasets 2D Cartesian Grid (CMS-FLOW) Jan09_tele (CMS-FLOW) Implicit_Circulation Implicit_Circulation It23 Current_Magnitude It23 Water_Elevation 			
		< <u>B</u> ack	Finish	Cancel

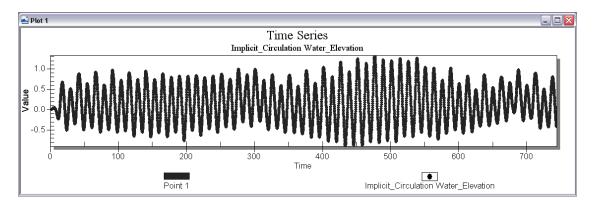


Figure 4-58. Plot Wizard for time series data (top); Time Series plot of Water Elevation (bottom).

- 2. The plots can be updated by right-clicking the graph window and selecting *Plot Data*. Also, the time frame can be modified.
- 3. Changing the location of the Feature Point by dragging the point will also automatically update any graph open within SMS. Note that moving Feature Points that are extracting large datasets may take a considerable amount of time to reload.

Extensive statistical analysis of time series water levels is not available in SMS. However, it is convenient to extract this information from SMS which can be used in other software or Microsoft Excel.

4. To extract the raw data for use in other software right-click on the graph window and select *Export*. In the *Exporting Time Series* window, select *Export/Text/Data, Export Destination/File* (and specify a location), and select *Export*. Change the *Export Style* to *Table* and *Row vs. Column* to *Points/Subsets* (Figure 4-59). Export.

Export Time Series					
Select Subsets and Points All Data Selected Data Subsets to Export: Point 1 - Implicit_Circulation Water_E	Export What Data Data and Labels Data to Export X Axis Value, Y Axis Value				
Points to Export:	Export Style C List Delimited Tab C Tab C Comma Export Style Table C Subsets/Points Points/Subsets				
	Numeric Precision Current Precision Maximum Precision Cancel				

Figure 4-59. Export Wizard for plotted data.

5. To view the raw data (and another way to extract) right-click on the graph window and select *View Values*. The data are presented in a table that can be highlighted and copied to another program.

Other options for the display plot can be found on the XMS Wiki (<u>http://www.xmswiki.com/xms/SMS:2D_Plots</u>).

CMS-calculated water level variation is compared with water levels from the Belmar gauge (location shown in Figure 4-51) and given in Figure 4-60. Because the Sandy Hook gauge is located 30 km north of Shark River, the calculations have a slight phase advance in comparison to the measurements because the tidal wave propagates from north to south on this coast. The ocean gauge typically leads the bay gauge by 20-30 min.

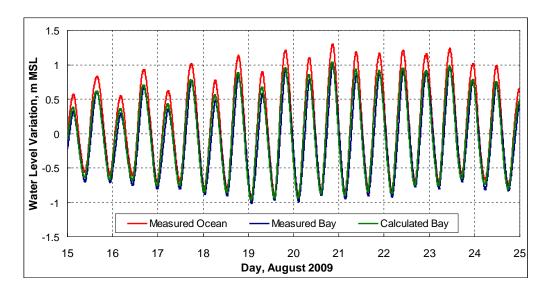


Figure 4-60. Observed time series of water level at Sandy Hook and Belmar ("Bay") and calculated water level at Belmar.

If time series data for the model were not set to the same interval as the measured data, there are filtering options within the data calculator.Reducing output (water level) from the solution:

> 1. To create a 30 minute dataset of water levels from the original 6 minute output, go to *Data*, *Data Calculator*, and under the *Tools* section, select *Temporal*, *Sample Time Steps* (Figure 4-61).

Dataset Toolbox		X
		`
Tools Math Compare datasets Data Calculator Temporal Compute derivative Conversion Conversion Calculator Modification Map activity Filter	- Sample time steps Data Sets Data Sets D	Time Steps 21792 22:12:00 21792 22:13:00 21792 22:24:00 21792 22:30:00 21792 22:42:00 21792 22:42:00 21792 22:42:00 21792 23:00:00 21792 23:10:00 21792 23:10:00 21792 23:10:00 21792 23:10:00 21792 23:20:00 21792 23:40:00 21792 23:40:00 21792 23:48:00 Set As Start Set As Start Set time: 21762 00:00:00 Time step: 30.0 minutes End time: 21792 23:49:00
	Data Set Info	Interpolate times
Update Available Tools	Output dataset name: 30min_WL	Sample
Help		Done

Figure 4-61. Sampling time steps of the Water_Elevation scalar dataset in the Dataset Toolbox.

- 2. Select the *water level* dataset under the solution datatree, and create an *Output dataset name* at the bottom.
- 3. Set the Start time to the beginning of the series and the end time to the end by selecting the time under *Time Steps* and selecting the associated button below. Change the time step to 30 minutes (or 0.5 hours), select *Sample*.

Depth-average down-looking ADCP current data were measured at three transects, or 2-D profiles along transects, in Shark River Inlet during the calibration time period in August, 2009. This data was processed with off-the-shelf software, where velocity was binned into depth measurements throughout the water column, and converted into a .GIS file. To display preprocessed measured velocities, they must be converted into an XYZ format with additional data (velocity and direction, or Vx and Vy) in additional columns. SMS will recognize both the XYZ data, and assign extra scalar or vector datasets to the imported files.

Importing GIS-type files from D-ADCP current measurements output into SMS:

 Open the provided file in the section folder SRI082009_DAV_1300.GIS, and select *Use Import Wizard* (An excel version of the text file is also provided in the folder). Select *space/tab* deliminated if not already checked and click *Next*, and select the X, Y, Z, Vector X and Vector Y columns (Figure 4-62). Be sure that the Header of the Vector X & Y columns is the same. Change the headers so they are the same (Vector), otherwise this incurs an error when importing in SMS.

No data flag 999.0 Name: SRI082009_DAV_1300				Triangulate data aximum edge length erge duplicate point		te long triangle 100000.0 0.0000100	,5
Туре	<not mapp="" th="" 🔻<=""><th><not mapp="" th="" 💌<=""><th>Vector X 🗸</th><th>Vector Y 🗸</th><th><not mapp="" th="" 🔻<=""><th><not mapp<="" th=""><th>^</th></not></th></not></th></not></th></not>	<not mapp="" th="" 💌<=""><th>Vector X 🗸</th><th>Vector Y 🗸</th><th><not mapp="" th="" 🔻<=""><th><not mapp<="" th=""><th>^</th></not></th></not></th></not>	Vector X 🗸	Vector Y 🗸	<not mapp="" th="" 🔻<=""><th><not mapp<="" th=""><th>^</th></not></th></not>	<not mapp<="" th=""><th>^</th></not>	^
Header	Current_Magnit	Current_Direction	Vector	Vector	Vector_Z	Vector_Error	≣
	0.114173	185.403	-0.0181	0.112	-0.0128	-0.096	_
	0.161986	98.4111	0.067778	0.145333	-0.022889	-0.050333	
	0.181666	233.0622	-0.047	0.172111	-0.034222	-0.025778	
	0.179558	264.7467	-0.072556	0.153111	-0.059444	-0.037222	~
<						>	_

Figure 4-62. Sampling time steps of the Water_Elevation scalar dataset in the Dataset Toolbox.

All of the files were imported into SMS similarly as the time series data in the above section and are provided for you. All the data imported included X,Y,Z, Vx, Vy, Mag, and Dir for all three transects at a particular measurement time period. The files (under Hydro\Water Level Calibration\Measured D-ave velocity GIS\SMS) have been converted into scatter datasets for quick import in SMS for viewing.

2. Import (drag and drop) one or two of the .h5 files (e.g. *SHARK820_HOURLY - SRI082009_DAV_1100.h5*). In

Display Options, under *Scatter*, select velocity vectors and adjust the vector settings tab (Figure 4-63).

- 3. For a general estimate of comparison of the magnitude, convert one of the measurement files' vectors to magnitude and direction (right click, *vector to scalars*). This can be compared to the calculated magnitude for a rough estimate.
- 4. The scalar value of the measured data is in centimeters. Create a new dataset in meters using the data calculator (Figure 4-64).

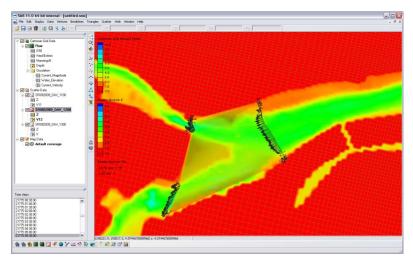


Figure 4-63. Example of the vector display along the measured transects. Note the vectors are scaled to the magnitude, and these scales can be manipulated in the Scatterset Vector tab.

Deta Calculator Deta Sets Calculator Calcula	Time Steps
B2 d3. V12 Direction B2 d4. x location B2 d5. y location B2 d5. y location Data Set Info	Use all time steps Calculator I () in x^yy in x^yy in xiy in xiy in xiy in xiy in xiy
Output dataset name: V12 Mag (m)	Compute

Figure 4-64. Data calculator used to convert the vector magnitude from centimeters to meters for comparison to the calculated velocity magnitude.

4. To display the scatter points with colors representing the flow, go to the *Scatter* Tab under the *Display Options*, and select the *Use Color Contour Scheme* under *Points*. Make the points a size 10 and they will be visible and the color differences noticeable as in Figure 4-65.

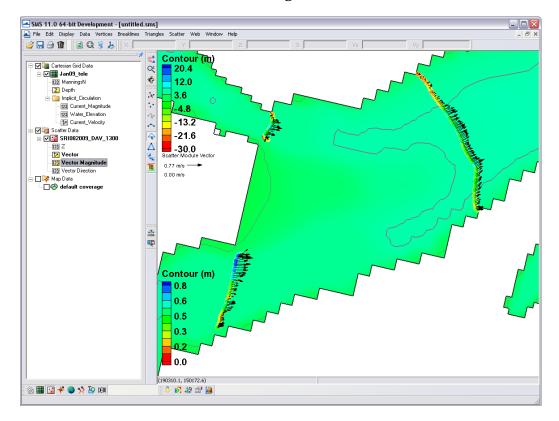


Figure 4-65. Color options turned on for scatter points.

To compare the measured current velocity data to calculated, the data must be in SMS in this format, where xyz data overlay the proper region and the units of the measurements are the sameBoth datasets can be viewed and extracted within the SMS through the use of observation arcs. The arcs must be set along the transect line and have enough points to illicit one value per cell, but not too many where there will be duplicate calculated values. The imported measured datasets are much denser than the cell coverage. Below describes how to plot a transect, or observation arc, through the measured points that will display both measured point data and calculated data across a distance.

Displaying measured and calculated currents in SMS.

- 1. Following the above section, the current velocity file is displayed similar to Figure 4-66. Draw three observation arcs over each of the three transects. Directional arrows will display, and the direction of the arc should reflect ebbing or flooding. If the arrows face the flooding direction, flood currents will be positive, and ebb currents will be negative.
- 2. Redistribute the vertices on the arcs (they should not have any yet) to a value similar to the number of cells across each transect. E.g. Transect 1 (main channel) should have 25-30 vertices.

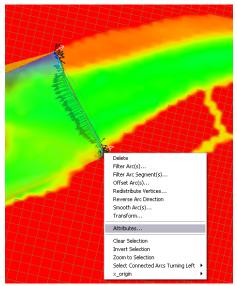


Figure 4-66. Example of a feature arc with arrows in the ebb direction. Redistribute Vertices, Reverse Arc, and other options are available in the drop down menu.

3. To plot, select *Plot Wizard* from *Display*, and select an *Observation Profile*. In Step 2, select one of the arcs (uncheck others), and under *Extra Profile* select *Model Intersections*. Figure 4-67 illustrates everything selected for plotting the measured and calculated data for the specific time of the transect measurement.

Coverage Coverage: default coverage	Dataset(s) C Active C Spec	ified Time step(s)	e Specified
Extract profile from: Model Intersections Show Arcs Arc 1 Arc 1 Arc 2 Arc 2 Arc 3 A	D Cartesian Grid (CMS Jan09_tele (CMS-FI Jan09_tele (CMS-FI) Jan09_tele (CMS-FI) Jan09_tele (CMS-FI) Jan09_tele (CMS-FI) Jan00_tele (CMS-FI) J	.0W) 46 □ 46 □	Times 8/20/2009 12:30:00 8/20/2009 12:36:00 8/20/2009 12:42:00 8/20/2009 12:44:00 8/20/2009 12:54:00 8/20/2009 1:00:00 PM 8/20/2009 1:00:00 PM 8/20/2009 1:18:00 PM 8/20/2009 1:18:00 PM 8/20/2009 1:36:00 PM

Figure 4-67. Plot Wizard data options for displaying measured and calculated data from an observation arc.

- 4. Specify the datasets to be plotted, the *Current_Magnitude* under the grid and the *Vector Magnitude* under the scatter-set data. Select the date and time the transect was measured, which was 20 August 2009 at 1PM GMT.
- 5. The resultant plot is shown in Figure 4-68, where the closest points from the measured data were plotted as distance across the arc, and model grid cell centers are where numbers are extracted for the calculated data. Data can be extracted from the plot similarly to the ways defined in the water level extraction section at the beginning of this section.

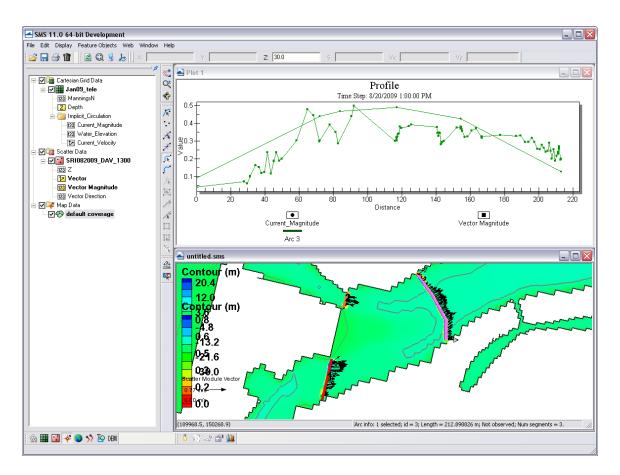


Figure 4-68. Plotted measured and calculated data from the larger observation arc to the East. Note that the positive direction reflects the observation arcs direction.

Sediment Transport

Sediment transport rates can be used to calculate sediment statistics, sediment pathways, fluxes across arcs, and balances over polygonal areas. Several sediment transport statistics can be calculated during the simulation and output at any time. These statistics include the net and gross total sediment transport rates. For additional details see the <u>Simulation Statis-</u><u>tics</u> section.

Calculating Sediment Transpor Roses at Observation (Save) Points

Sediment transport roses are plots in which transport is integrated over directional bins and plotted over a map of the site in order to observe the amount and direction of sediment transport at a specific point. A general picture of the sediment transport pathways can be obtained by plotting several sediment transport roses in the areas of interest. Below is a stepby-step example for Shark River inlet on how to plot sediment transport roses:

Setup Observational Cells

- 1. Click on the 🔣 Select Cells tool.
- 2. Select a cell and left-click
- 3. Select Cell-attributes... (see Figure below).

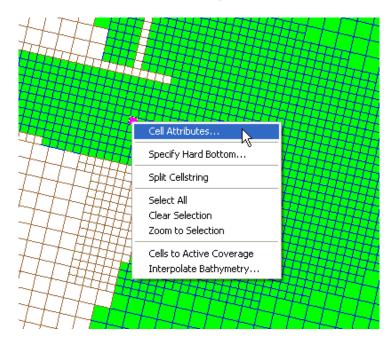


Figure 4-69. Opening the CMS-Flow Cell Attributes window.

- 4. The *CMS-Flow Cell Attributes* window will appear (see Figure below).
- 5. Check the box next to *Transport output*, so that the model will output the sediment transport rates.
- 6. Save the project

CMS-FLOW Cell Attributes
Cell Type
C Inactive land
C Active ocean
Observation
Time series output
✓ Flow rate output
✓ Transport output
Identifier: Entrance
Help OK Cancel

Figure 4-70. CMS-Flow Cell Attributes window.

The CMS-Flow Control (Card) File will contain a section for the observational cells that will look like this:

```
!Observation Cells
                                     900.0
TIME_SERIES_INCREMENT
FLOW_RATE_INCREMENT
                                     900.0
Q_TRANS_RATE_INCREMENT
                                     900.0
ELEV OBS CELLS BEGIN
     22943 "North Beach"
     28784 "Bay"
     30926 "Bridge"
     33484 "Throat"
     34145 "Entrance"
ELEV_OBS_CELLS_END
FLOW_OBS_CELLS_BEGIN
     22943 "North Beach"
     28784 "Bay"
     30926 "Bridge"
     33484 "Throat"
     34145 "Entrance"
FLOW_OBS_CELLS_END
Q_TRANS_OBS_CELLS_BEGIN
     22943 "North Beach"
     28784 "Bay"
     30926 "Bridge"
     33484 "Throat"
     34145 "Entrance"
Q_TRANS_OBS_CELLS_END
```

Run the model

Once the model has completed. The project foler will contain two files with the extension *_qtx.txt, and *_qty.txt. These files contain the total sediment transport rates in the x andy directions in units of kg/m/s.

Plot the sediment transport roses in Matlab

Exporting a Georeferenced image in SMS

If the grid is telescoping, it may be difficult to plot the grid in Matlab. There are ways of plotting a telescoping grid in Matlab, but for the purposes of visualization, the easiest approach is to export a georeferenced image from SMS and plot the image in Matlab. This is done by

1. Click on File | Save as... (see Figure below)

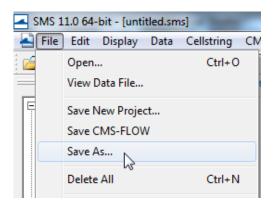


Figure 4-71. Opening the SMS Save As window.

- 2. Next to Save as type, select JPEG Image File.
- 3. Navigate to the correct directory
- 4. Enter a file name
- 5. Click *Save* (see figure below).

Figure 4-72. SMS Save As window.

An image file will be saved along with a projection and world file. The projection file contains the horizontal projection information and the world file contains the coordinates of the image origin, the rotation angles (zero for SMS), and pixcel size. The image file can easily be loaded and plotted in SMS.

Editing and running the Matlab script

The matlab script below is just an example to show the basic steps in plotting the sediment transport roses in Matlab. For each application, the file names, directories, station id's, and settings will need to be modified.

```
%Plots Sediment Transport Roses
clear all
%1. Obtain Observation Point coordinates
id = [22943 28784 30926 33484 34145]; Station id's
tel = read_cmstel('..\Hands-on\Flow_Shark.tel');
xsta = tel.x(id); ysta = tel.y(id);
cosang = cos(tel.angle*pi/180);
sinang = sin(tel.angle*pi/180);
%2. Read transport vectors
qtx = load('..\Hands-on\Flow_Shark_qtx.txt');
qty = load('..\Hands-on\Flow_Shark_qty.txt');
%3. Read and plot background image
A = imread('..\Hands-on\Image_Shark2.jpg');
wld = load('..\Hands-on\Image_Shark2.wld');
xi = wld(5) + (0:size(A,2)-1)*wld(1); %SMS images are NOT rotated
```

```
yi = wld(6) + (0:size(A,1)-1)*wld(4);
imagesc(xi,yi,A)
set(gca,'ydir','normal','Nextplot','add')
%4. Plot roses, Rotate transports from local grid angle to world
for k=1:size(qtx,2)-1
    qte = qtx(:,k+1)*cosang - qty(:,k+1)*sinang; %East
    qtn = qtx(:,k+1)*sinang + qty(:,k+1)*cosang; %North
    [sumx,sumy] = sumdirbin(qte,qtn);
    x = ones(length(sumx),1)*xsta(k);
    y = ones(length(sumx),1)*ysta(k);
    h = vecplot(x,y,sumx,sumy,'marker','^',...
        'lengthscale',10,'linewidth',2,...
        'MarkerFaceColor', 'k', 'MarkerSize',3);
end
axis([1.9018
                1.9257
                          1.4979
                                    1.5132]*1e5)
xlabel('X, State Plane, m'), ylabel('Y, State Plane, m')
return
```

The subroutine sumdirbin sums the transport rates over directional bins. Note that to integrate over time the values should also be multiplied by the output interval. However, because the vectors are only for plotting purposes, this step is not necessary here. The matlab script for summing the transports in directional bins is provided below

```
function [binx,biny] = sumdirbin(u,v,binsize)
% [binx,biny] = sumdirbin(u,v,vararqin)
% Sums the vector u,v in directional bins
% written by Alex Sanchez, USACE
if nargin<3
    binsize = 22.5; %deg, default bin size
end
u = u(:); v = v(:);
mag = sqrt(u.^{2}+v.^{2});
binlim = (-binsize/2:binsize:360-binsize/2)'; %limits
bincen = (0:binsize:360-binsize)';
                                               %centers
ndir = length(binlim);
angle = atan2(v,u)*180/pi;
angle = mod(angle, 360)+0.00001;
angle(angle==0) = 0.00001;
binmag = zeros(ndir-1,1);
for k=1:ndir-1
    ind = (angle>binlim(k) & angle<=binlim(k+1));</pre>
    binmag(k) = sum(mag(ind));
end
binx = binmaq.*cos(bincen.*pi/180);
biny = binmaq.*sin(bincen.*pi/180);
return
```

The resulting Matlab plot is shown in the figure below.

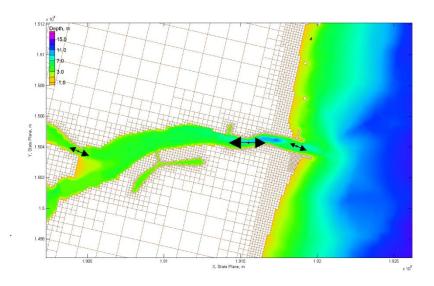


Figure 4-73. Total-load Sediment transport rates for Shark River Inlet.

Calculating Sediment Fluxes across Observational Arcs

In the CMS, sediment transport can be calculated across lines or polygons defined by feature arcs and polygons in a post-processing procedure. The integration across an arc may be written as

$$\overline{Q}_{t} = \oint_{L} \frac{1}{T} \int_{t} (\vec{q}_{t} \cdot \vec{n}) dt dL$$
(4-14)

where \hat{q}_i is the total-load sediment transport rate vector, t is time, L is the arc length, and \bar{n} is the unit vector normal to the arc line. Note that the order of the above integrals is irrelevant; however it is more efficient and accurate to perform the temporal integration first. CMS has the option to output sediment transport statistics which includes the net total-load sediment transport rate which is basically the temporal integration shown in the equation above. For further details on the sediment statistics see section Link. To use the sediment statistics in calculating fluxes across observational arcs:

- 1. Set the Sediment Transport Simulation Statistics (see section Link for more details).
- 2. Run the CMS with sediment transport.
- 3. Load the XMDF Global Solution File into SMS (drag-and-drop is the easiest way).

The data tree will have several sediment transport statistics including the Gross and Net Total-load sediment transport rates in units kg/m/s. Figure X shows an example of the data tree with the sediment simulation statistics for Shark River inlet.

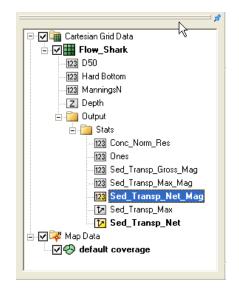


Figure 4-74. Data tree showing the sediment and hydrodynamic simulation statistics.

The total-load sediment transport rate is output into the Sed_Transp vector and Sed_Transp_Net scalar datasets. Figure XX shows an example of the Net Total-load Sediment Transport vectors and magnitude after a short 24-hr simulation.

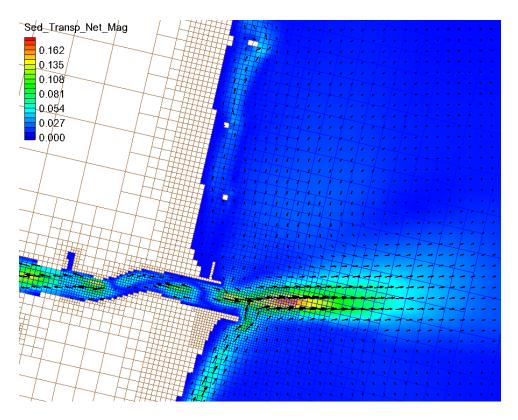


Figure X. Example of the Net Total-load Sediment Transport Rate vectors and magnitudes for Shark River inlet after a short 24-hr simulation.

The datasets are output at start and end of the statistics period. The statistics at the initial time are always zero and are only necessary for SMS to be able to perform the line integral which is part of the Time Series plot (described further below).

- 1. Either:
 - a. Create a new map coverage of Observation type (see Figure XX) or
 - b. Set the current map coverage to Observation type (see Figure XXX).

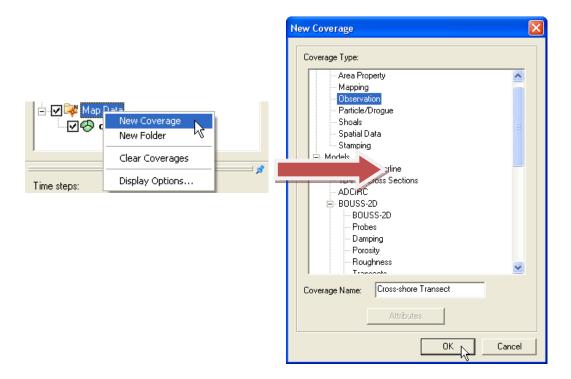
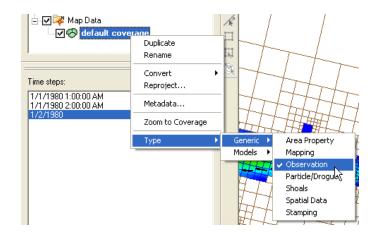



Figure . Creating a new Map Coverage of type Obesrvation.

Figure . Setting the current Map Coverage to an Observational type.

2. Create an observational arc by selecting the Create Feature Arc Tool \checkmark , and click on the points that define the Observational arc (see Figure below). The example shown below is intended for longshore sediment transport. When calculating longshore sediment transport, the offshore end of the transects should extend beyond the breaker and closure depth. It is best that the ends of the observational arc do not touch inactive (land) cells as this may cause interpolation problems in SMS.

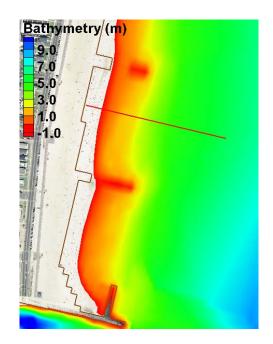


Figure 4-75. Example of a Feature Arc for calculating sediment transport.

- 3. If necessary, use the Select Feature Point 🔀 tool to adjust the end points of the arc (the arc can be deleted by selecting with the Select Feature Arc 📧 tool and pressing the delete key).
- 4. The positive direction of the sediment transport is defined by the Feature Arcs

direction. To view the arc direction, click on the Select Feature Arc tool and right-click on the Feature Arc once. The arrows displayed at the beginning and end of the transect indicate the direction of the arc which defines the positive for all fluxes or vectors calculated across it.

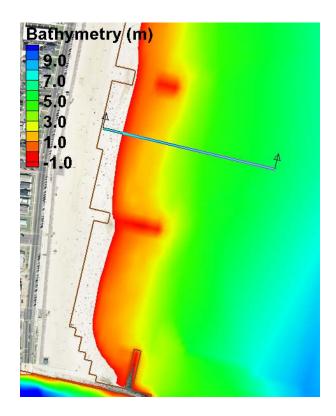


Figure 4-76. Highlighted Feature Arc with the positive direction shown by the arrows.

5. If necessary, the arc direction may be changed by clicking on the Select Feature

Arc it tool, and selecting the feature arc by right-clicking it once and selecting the option: Reverse Arc Direction (see figure below). The same applies for feature polygons.

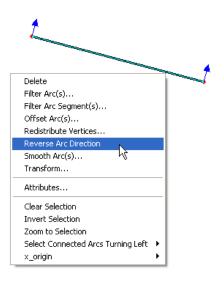


Figure 4-77. Reversing the arc direction.

The net sediment transport dataset is integrated along the arc (line integral) to compute the sediment transport across the Feature Arc. This procedure is done in the SMS Plot Wizard. The sediment transport vector field is interpolated to the points where the arc intercepts cell faces and is then integrated across the Feature Arc. Follow each step outlined below:

- 6. Open the Plot Wizard by clicking on the plot wizard icon 🕮, or clicking on the Display menu and selecting Plot Wizard.
- 7. Select Time series as the Plot Type and then click Next.
- 8. In the Plot Wizard Step 2 of 2 window, select Flux as the function type.
- 9. Check the appropriate feature arc checkbox(es).
- 10. Select the ones dataset for the scalar dataset.
- 11. Select the Sed_Tranp_Net as the vector dataset.
- 12. Make sure the start and end times are correct.
- 13. Select Finish.

Function type: Flux Coverage: Humboldt_Obs_Arcs Start time: 21153 00:00:00 End time: 21179 15:00:00 Use calibration data Band	Scalar Dataset:	
Show Arcs 1 Arc 1	Vector Dataset: Definition 2D CGrid (CMS-Flow) Flow (CMS-Flow) RUN1 Current_Velocity Total_Sediment_Trans	
All On All Off		

Figure 4-78. Selecting the correct Start and End Times, Feature Arcs, and Scalar and Vector Datasets in Step 2 of 2 of the Plot Wizard.

A plot will appear in SMS similar to the example shown below

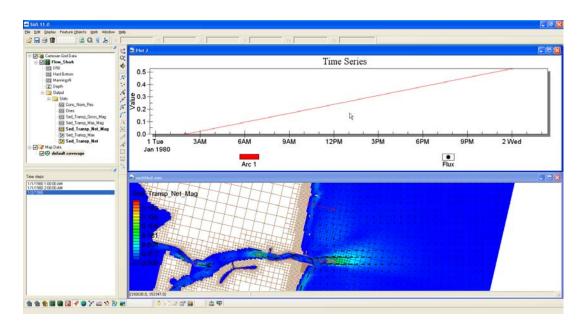


Figure 4-79. Example plot of an integrated net sediment transport rate across a feature arc.

To view the final value of the net sediment transport rate across the feature arc, left-click on the plot, and select View Values... (see figure below).

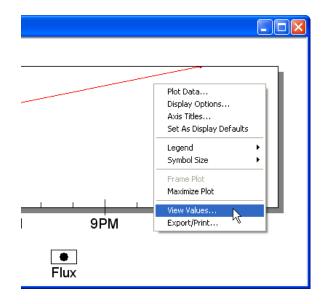


Figure 4-80. Selecting View Values... after left-clicking on the time series plot.

An SMS window will appear with the title View Values. The net sediment transport rate across the feature will be shown under the second row under the Value column. The units of the transport will be kg. In order to obtain a

- v	'iew Values	
	Arc 1 - Ones - Sed_Transp_Net	
		Value
1	29221.083333333	0.0
2	29222.0	0.5285127426746
		Close

Figure 4-81. Net sediment transport rate integrated across

Morphology

The results of the CMS calculated morphology change can be visualized several ways, from three dimensional or planar view of the bathymetry, planar view of the volumetric erosion and accretion, and with 1-D cross-sections of the time series. All vector and scalar information can be extracted from points and arcs (and polygons) in SMS. This section will cover the methodology used to post process time series morphology change data.

To plot channel infilling in SMS in a graphical format, the results in the solution file need to be changed from depths (the depth below the datum in which CMS calculates) to elevations. SMS can plot multiple cross-sections, or arcs, against each other, or through time.

Channel Infilling by cross-sections

1. Load *Jan09tel.cmcards* (and solution file, if it does not load automatically).

- 2. Rt-click on the *Time Series* window on the left and select "Time Settings", and change the time reference from *Relative* to *Absolute*.
- 3. In the Cartesian Grid Module, click *Data*, *Data Calculator*, and the Data Calculator should be selected in the Tools section as shown in Figure 4-82.
- 4. Select the *Bathymetry* scalar (123) dataset; under *Time Steps* check the *Use all time steps* on, and double-click the *Bathymetry* (highlighted in Figure 4-82).
- 5. The line under Calculator will display "e:all", add the multiplication symbol (*) and negative 1 (-1) as shown in Figure 4-82.
- 6. Change the *Output data set name* as shown in Figure 4-82 so as to distinguish this dataset from the original *Bathymetry* output, click *Compute*, and after the scalar set appears in the SMS window (Figure 4-83), click *Done*. (Note: values for the contours may need to be adjusted to view elevation range.)

Compare data sets Data Calculator Data Calculator Data Calculator Temporal Sample time steps Conversion Scalar to Vector Vector to Scalar MoningsN Conversion Scalar to Vector Vector to Scalar Modification Modificatio	ime Step 2. 1/1/13 3. 1/1/13 4. 1/1/11 5. 1/2/13 6. 1/2/13 7. 1/2/13 10. 1/3/1 11. 1/3/1 12. 1/3/1 13. 1/4/1 15. 1/4/1 15. 1/4/1 16. 1/4/1 17. 1/5/1 ▼ Use a alculator	990 6:0 990 6:0 990 6:0 990 6:0 990 72: 990 6:0 990 72: 990 6:0 990 72: 1990 6:1 1990 6:1 199	2:00:00 00:00 P 2:00:00 A 2:00:00 P 5:00:00 P 5:00:00 5:00:00 5:00:00 5:00:00 5:00:00	0 PM PM 0 PM 0 PM 0 AM 00 PM 0 PM 0 AM 0 0 PM	e:all
Add to Expression Data Set Info	/ * - +		(In log 1/×) x^y sqrt abs	ave ave
Update Available Tools Output data set name: Morphology(Elv.)					Comp

Figure 4-82. Data Calculator Options in the Dataset Toolbox.

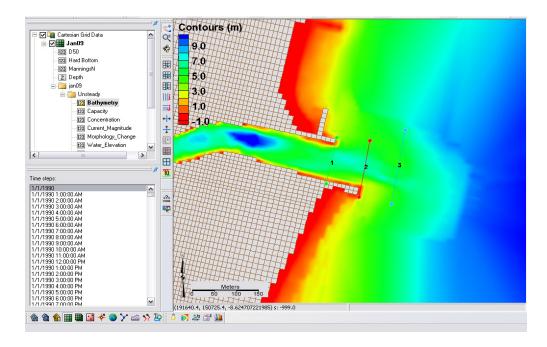


Figure 4-83. Display of calculated bathymetry now converted to elevations. Note the legend has been modified to display the new contours.

7. Create feature arcs for extracting the time series data by

switching to the *Map Module* button , or Map Data

select Type, Generic, Observation

- 8. Click the *Create a Feature Arc* button it to generate the arcs from which cross sections will be extracted, and click on one side of the channel and double-click on the other side to close the arc
- 9. Click the *Select a Feature Arc* button and select the generated arc (Note that there is a direction associated with the arc, which determines the sideview of the cross section)
- 10. Rt-click an arc and click on *Attributes*, and set the color and name(s) of each arc which are listed together in the *Observation Coverage* options (**Error! Reference source not found.**), click *OK*

	Active	Trans	Name	Module		Scalar Data Set	Vector Da	ta Set	Feature object typ
	Π	Г			•	· · · · · · · · · · · · · · · · · · ·		~	arcs
									Delete
erv	ation Arc	s							
T	Color		Name	x-origin					
-			Name						
-		• 1 • 2		0.0					
		✓ 3		0.0					
Ċ		-							

Figure 4-84. Observation Coverage attributes

- 11. To plot the profiles in SMS, Select *Display*, *Plot Wizard*, and *Observation Profile*, and select *Next*.
- 12. Following Figure 4-85, under *Coverage* check one arc (though multiple can be plotted), under *Data set* select *Specified data set(s)* and select the generated *Morphology* (Elev.) set only, and under *Time step* select *Specified time step(s)* and check on several times spaced apart by at least several days to months, click *Finish.*
- 13. Rt-click on the plot (Figure 4-86) and select *view values..*, and a table will appear with all the plotted distance and elevations given in the graph, (Note this ascii table can be copied and pasted into excel).

over	age		Data set	Time	step		
over	age: def	fault coverage	Active data set	C	Active ti	me step	
xtra	t profile	from: Model Intersection	 Specified data set(s) 	G	Specifie	d time step(s)	
1	Show	Arcs	TI23 Hard Bottom	1	Show	Times	~
1	1	1	123 ManningsN	1	~	1/1/1990	P
2		2	Z Depth	2		1/1/1990 6:00:00 AM	1
3	Г	3	📄 🕢 🚞 jan09	3	Г	1/1/1990 12:00:00 PM	
			🗏 🗐 🔄 Unsteady	4	Г	1/1/1990 6:00:00 PM	
			123 Bathymetry	5		1/2/1990	
			123 Capacity	6		1/2/1990 6:00:00 AM	
			123 Concentration	7		1/2/1990 12:00:00 PM	
			123 Current_Magnitude	8		1/2/1990 6:00:00 PM	
			123 Morphology_Change	9		1/3/1990	
			123 Water_Elevation	10		1/3/1990 6:00:00 AM	
			123 Morphology(Elv.)	11		1/3/1990 12:00:00 PM	
				12		1/3/1990 6:00:00 PM	~
1	All On	All Off	All On All Off		All On	All Off	

Figure 4-85. Plot Wizard Step 2.

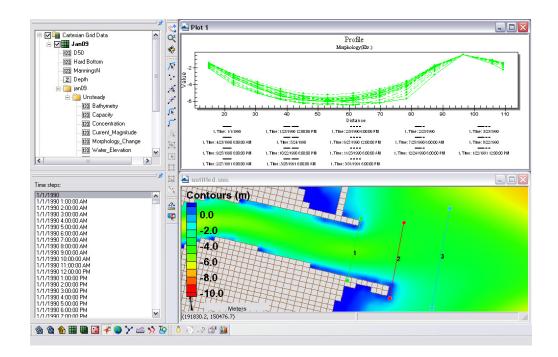


Figure 4-86. Plotted cross-section.

14. To export the data in different formats, rt-click on the plot, and select *Export/Print* for several options to export the graph or data from the graph (Figure 4-87)

15. To add more profiles or time-series, rt-click on the plot, and select *Plot data..* to bring up the original options from Figure 4-85.

Export		
• EMF C WMF C BMP	C PNG	🔿 Text / Data
Export Destination		
ClipBoard		
File Browse		
© Printer		
	ers C Inches C Points	8
C Printer	ers C Inches C Point:	s

Figure 4-87. Data Export Options.

Analysis of cross-sectional area and sediment volume changes are the most common approaches to quantifying morphologic change. Another method of quantifying change in a spatial framework is through comparison of the planform aerial change. This method is useful in delineating active zones of transport, typically based off of the depth of closure, and can define the upper and lower limits of transport. These results can be used to interpret bypassing areas or zones, however, determining the bypassing pathways should not be based off of this analysis alone.

Planform area changes

 To filter the morphology dataset for the time periods of interest, i.e. every month, open the *Data Calculator* and select *Sample time steps* under the *Temporal* section (Figure 4-88).

ools	Sample time steps	
🖃 Math	Data Sets	Time Steps
Compare datasets Data Calculator Data Calculator Compute time steps Conversion Scalar to Vector Vector to Scalar Modification Map activity Filter	Image: Constraint of the second se	 \$/26/1990 \$/26/1990 \$/26/1990 \$/27/1980 \$/27/1980 \$/27/1980 \$/29/1980 \$/20/1980 \$/20/1980 \$/31/1980 <l< td=""></l<>
Update Available Tools	Output dataset name: 1Month_Depth	Sample

Figure 4-88. Sampling time steps from a solution dataset.

- 2. Select *Depth* under *Data Sets*, change the *Output dataset name*, and set the *start time* and *end time* to Jan 1 and Jun 1, respectively, with an interval of 30 days. Select *Sample*. This should produce a *Depth* timestep approximately every month.
- 3. In order to map an elevation, the grid must be converted to a scatterset.
 - Rather than take the time required to convert the entire solution during this workshop, we have provided this file in the folder (File: *1Month_Depth*). (To convert the grid solution file to a scatterset, select *Data|Map to Scatter*, and SMS will convert all of your time series datasets to the scatter module (Figure 4-89). This can take anywhere from minutes to hours, depending on the size of the file and speed of the processor. Open the provided scatterset.
 - Or, delete the Jan09_nonuniform solution datatree so that the main CMS-Flow datasets and the *1Month_Depth* dataset are the only datasets left. Then select *Data*|*Grid-> Scatter*, and SMS will convert only those datasets.

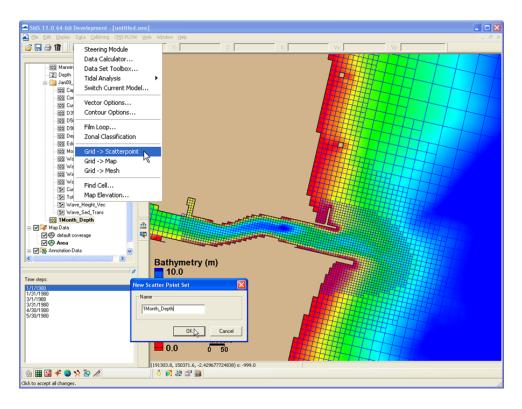


Figure 4-89. Converting a solution dataset to a scatter dataset.

- 4. Create a new map coverage (by right clicking *Map Data* in the data tree and selecting *New Coverage*) for mapping out specified contours over the time series depth scatterset.
- Select the *1Month_Depth* Scatterset (*Scatter Module* should be on) and the first time stamp (1 Jan), and go to *Da-ta/Scatter Contour -> Feature.* Choose an elevation to map (6.0 m), a spacing of the points in the resultant arc, and select the Map Coverage ('*Area*' in Figure 4-90) that the arcs are created in.

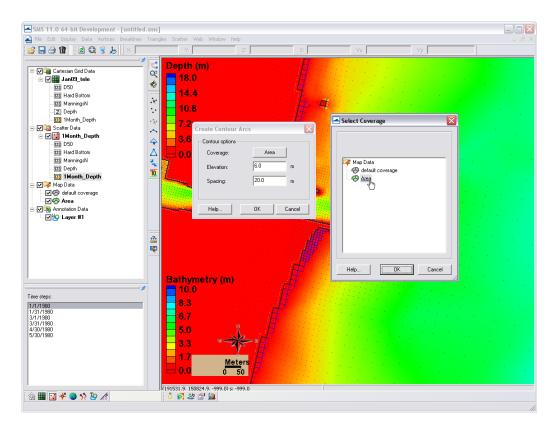


Figure 4-90. Mapping a scatterset contour to the map module.

6. Create another new Map Coverage, select the final timestamp (30 May), and go to *Data/Scatter Contour -> Feature* and select the same elevation (6.0 m) and point spacing. Switch between the two coverages to view the location of each contour (Figure 4-91). Note that the arcs hold a zelevation (displayed in Z in the bar above) and are partially visible under the color-filled scatter data.

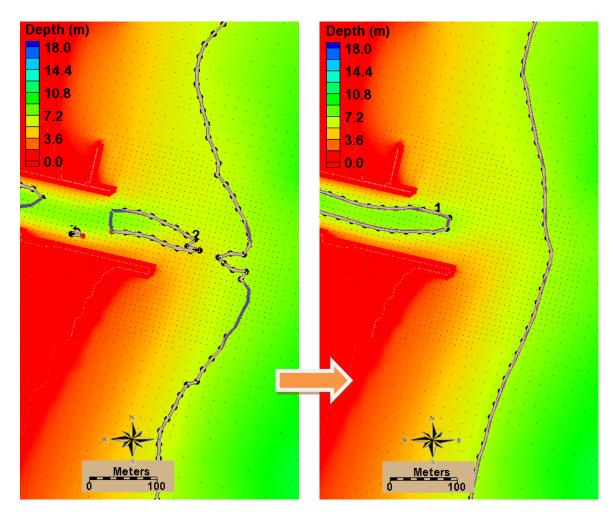


Figure 4-91. Mapped coverage of the 6-m contour at Months 1 and 6 (left and right, respectively).

7. To calculate planform area, each contour in both maps must be closed off with arcs to create a polygon. Create a polygon in the closed arcs by selecting *Feature Objects/Build Polygons*. An example is shown in Figure 4-92. Note that the area of the selected polygon is given at the bottom of the screen in the units the solution file is given in, which is always metric for the CMS.

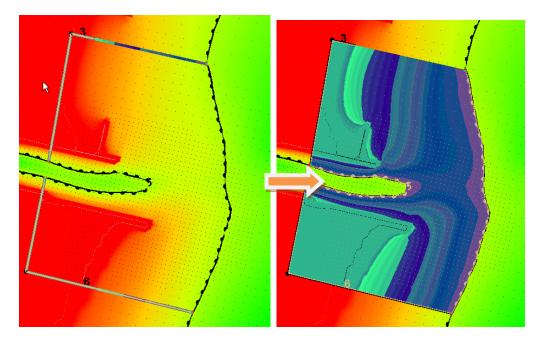


Figure 4-92. Left: Two arcs drawn to connect the 6m contour back to a common point to close off the polygon. Right: Highlighted polygon after created.

Creating polygons between time series allows for calculation of planform area change at a morphologic spatial scale through time. The difference shown in the arcs in Figure 8.4.10 is substantial, and can be quantified with the use of arcs and polygons. It is important to be careful with delineating the morphologic form of interest. If the full area is being calculated for a feature (an ebb shoal), be sure to be discrete in the size of these aerial calculations because they may skew the final calculation of the morphologic feature of interest.

Similarly, volume change can be elicited from polygons created with Feature Arcs. The next section describes how to calculate volume change over an arc.

Calculating volume change from polygons.

1. Create a polygon similarly to the above exercise that created arcs to complete a polygon in the planform area calculations. Choose an area around the ebb shoal, or within the channel, and draw a single arc connecting around the feature. Be sure to close the end of the polygon by letting the mouse automatically hover over the final point (the pointer will relocate when placed near another feature point).

- 2. Create a polygon in the closed arcs by selecting *Feature Objects/Build Polygons*. An example is shown in Figure 4-92.
- 3. To select the cells within the polygon, next, with the polygon selected, go to *Feature Objects/Select/Delete Data*, and select *select, Cartisian Grid Cells*, and *Inside Polygon* (Figure 4-93).

Select / Delete Data	Data Domain
Select	 Inside polygon(s)
C Delete	C Outside polygon(s)
Choose Data to Select	
C Mesh	C Scatter
Nodes	Points
C Elements	C Triangles
C Duplicate nodes	Scatter set to select
 Cartesian grid cells 	
C Cartesian grid cells	Select All
locations	Clear All
	,

Figure 4-93. Options for selecting and deleting data from Mesh, Cartesian Grids, and Scattersets using polygons.

Note, again, that the volume of the selected polygon is given at the bottom of the screen in the units the solution file is given in, which is always metric (m³) for the CMS. The volume given in the lower right corner of the window (Figure 4-94) are a positive, negative, and total volume representative of the integrated positive, negative, and combined volumes from each cell. Therefore, the numbers represent the volume based off of the dataset's datum.

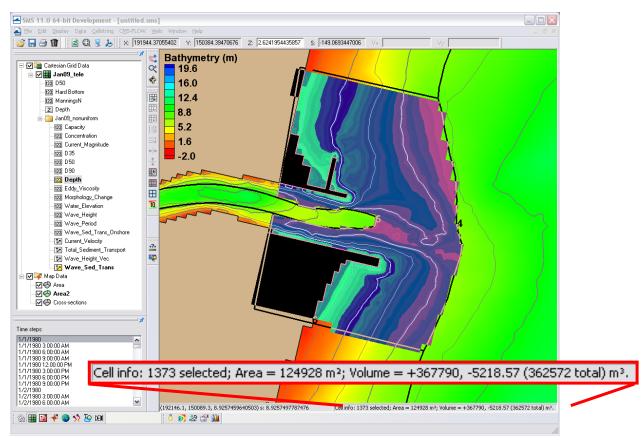


Figure 4-94. Selected cells from a polygon. Volume information given in lower, right corner of screen.

If depths are selected in the solution datatree as the measurement for volume calculation (one of the direct outputs in the CMS solution file), volume is positive and represents the space that the water occupies. To get the volume of a morphologic feature, a base level to calculate above must be chosen. Navigation depths or depth of closures are often used as a base level for a quick estimation of volume. The area of the cells is also included in basic cell info at the bottom of the screen, as illustrated in Figure 4-94. Multiplying this area by the base level (with respect to the model datum) will produce a base volume of which the calculated volumes can be subtracted from.

5 Summary

The Coastal Modeling System (CMS) User Manual serves as a reference guide to the applied theory, numerical methodology, and the application of the modeling system. The CMS is an integrated wave, current, sediment transport and morphology change model available in the Surface-water Modeling System (SMS). The first chapter on theoretical background summarizes the governing hydrodynamic and sediment transport theory and empirical equations. The Numerical Methods chapter describes the numerical solvers and schemes used in the implicit CMS-Flow. Chapter 4, the User Guide, gives step by step guidance on how to setup and run the CMS and how to analyze the modeling results as part of the calibration process.

The CMS was developed under the Coastal Inlets Research Program (CIRP), an Operations & Maintenance Navigation research program at the Coastal and Hydraulics Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers. Information presented herein was prepared for use in SMS 11.0 and higher, although many features may exist in earlier versions of SMS. The latest guidance, documentations and downloads are available at: <u>http://cirp.usace.army.mil/_</u> and from the CIRP wiki: <u>http://cirp.usace.army.mil/wiki/Main_Page</u>.

6 List of Symbols

Variable	Meaning	Units
f_c	Coriolis parameter	1/s
h	Time -averaged total water depth $h = \zeta + \eta$	m
η	Time-averaged water surface elevation above the still water line	m
ζ	Still water depth	m
S^m	Source term due to precipitation, evaporation and sub- grid structures	m/s
U_{i}	Depth-averaged Lagrangian current velocity defined as $U_i = U_i^E + U_i^S$	m/a
U_i^E	Time- and depth-averaged current velocity vector (i.e. Eulerian velocity)	m/s
U_i^{S}	Depth-averaged Stokes velocity	m/s
8	Gravitational constant (9.806 m/s²)	m/s²
p_{atm}	Atmospheric pressure	Pa
ρ	Water density (~1025 kg/m³)	kg/m ³
V _t	Turbulent eddy viscosity	m^2/s
$ au^s_i$	Wind surface stress vector	N/m^2
$ au_i^w$	Wave stress vector	N/m^2
$ au^b_i$	Combined wave-current mean bed shear stress vector	N/m^2
C_s	Depth-average salinity concentration	ppt
u_w	Peak bottom orbital velocity based on the significant wave height and linear wave theory	m/s
<i>u_{rms}</i>	Peak bottom wave orbital velocity based on the root- mean-squared wave height	m/s
$ ho_a$	Air density at sea level	kg/m ³
c_D	Wind drag coefficient	-
W_i	10-m wind speed vector	m/s
W	10-m wind velocity magnitude = $\sqrt{W_i W_i}$	m/s
q_{b^*}	Equilibrium bed load transport	m^2/s

q_{s^*}	Equilibrium suspended load transport	m^2/s
q_{t^*}	Equilibrium total load transport	m^2/s
d_{50}	median grain size	m
S	sediment specific gravity or relative density	-
Θ_c	Shields parameters due to currents	-
$\Theta_{cw,m}$	Mean Shields parameters due to waves and currents	-
Θ_{cw}	Maximum Shields parameters due to waves and cur- rents	-
Θ_{cr}	Critical Shields parameter.	-
d_*	Dimensionless grain size based on the median grain size	-
d_{*_k}	Dimensionless grain size based on the k^{th} size class	-

7 References

- Andrews, D.G., and McIntyre, M.E. 1978a. An exact theory of nonlinear waves on a Lagrangianmeanflow. Journal of Fluid Mechanics. 89, 609-646.
- Aquaveo. 2010. SMS: XY Series Files (*.xys). http://www.xmswiki.com/xms/SMS:XY_Series_Files_(*.xys).
- Armanini, A., and di Silvio, G. 1986. "Discussion on the paper 'A depthaveraged model for suspended sediment transport', " by Galappattti, G., and Vreugdenhil, C. B. Journal of Hydraulic Research. 24(5), 437-441
- Batten, B.K., and N.C. Kraus. 2006. "Evaluation of Downdrift Shore Erosion, Mattituck Inlet, New York: Section 111 Study," *Technical Report ERDC/CHL-TR-06-1*, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, Mississippi
- Beck, T.B., and N.C. Kraus. 2010. Shark River Inlet, New Jersey, Entrance Shoaling: Report 2, Analysis with Coastal Modeling System. *Technical Report ERDC/CHL-TR-10-4*, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
- Butler, C. D., Richards, D.R., Wallace, R.M., Jones, N.L., and Jones, R. 2007. "eXtensible Model Data Format (XMDF)," *Coastal and Hydraulics Laboratory Special Report ERDC SR-07-1*, U.S. Army Engineer Research and Development Center, Vicksburg, MS.
- Buttolph, A.M., Reed, C.W., Kraus, N.C., Ono, N., Larson, M., Camenen, B., Hanson, H., Wamsley, T., and Zundel, A. K. 2006. Two-dimensional depth-averaged circulation model CMS-M2D: Version 3.0, Report 2: Sediment transport and morphology change. *Tech. Rep. ERDC/CHL TR-06-9*, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.
- Bye, J.A.T. 1985. Large-Scale Momentum Exchange in the Coupled Atmosphere–Ocean, Coupled Ocean–Atmosphere Models," Elsevier Science Publishers, Amsterdam, pp. 51–61.
- Byrnes, M.R., Griffee, S.F., and Osler. M.S. 2010. Channel Dredging and Geomorphic Response at and Adjacent to Mobile Pass, Alabama. *Technical Report ERDC/CHL-TR-10-8*, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS. <u>http://cirp.usace.army.mil/pubs/html/10-Byrnes_TR-10-8.html</u>, accessed June 2011

- Camenen, B., and Larson, M. 2005. A general formula for non-cohesive bed load sediment transport. *Estuarine, Coastal and Shelf Science*, 63, 249–260.
- Camenen, B., and Larson, M. 2007. A unified sediment transport formulation for coastal inlet application. *Technical report ERDC/CHL CR-07-1*, US Army Engineer Research and Development Center, Vicksburg, MS.
- Camenen, B., and Larson, M. 2008. A general formula for noncohesive suspended sediment transport. *Journal of Coastal Research*, 24 (3), 615–627.
- Cebeci, T., and Bradshaw, P. 1977. Momentum transfer in boundary layers. Hemisphere, Washington D.C.
- Choi, S.K., Nam, H.Y., and Cho, M. 1995. A comparison of higher-order bounded convection schemes. *Computational Methods in Applied Mechanics and Engineering*, 121, 281-301.
- Chawla A., and J. T. Kirby. 2002. Monochromatic and random wave breaking at blocking points. *Journal of Geophysical Research* 107(C7), 10.1029/2001JC001042.
- Dawe, J.T., and Thompson, L. 2006. Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. *Geophysical Research Letters*. 33, L09604.
- Demirbilek, Z. and Rosati, J.D. 2011. Verification and Validation of the Coastal Modeling System: Report I, Executive Summary. *Tech. Report ERDC/CHL-TR-11-10*, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
- Falconer, R.A. 1980. Modeling of planform influence on circulation in harbors. *Proceedings Coastal Engineering Conference* '17. ASCE, 2,726-2, 744.
- Ferziger, J. H., and Peric, M. (1997). "Computational Methods for Fluid Dynamics", Springer-Verlag, Berlin/New York, 226 p.
- Folk R.L, and Ward, W.C. 1957. Brazos River bar: a study in the significance of grain size parameters. *Journal of Sedimentary Petrology*, 27, 3–26.
- Fredsoe, J. 1984. Turbulent boundary layer in wave-current motion. *Journal of Hydraulic Engineering*, ASCE, 110, 1103-1120.
- Gallappatti, G., and Vreugdenhil, C.B. 1985. A depth-integrated model for suspended sediment transport. *Journal of Hydraulic Research*, 23(4), 359-377.
- Harlow, F. H. & Welch, J. E. 1965. Numerical calculation of timedependent viscous incompressible flow of fluid with free surface. *Physics of Fluids.* 8, 2182. (NOTE: they are Francis Harlow & Eddie

Welch, two of my mentors at Los Alamos Lab in 1970s, typo in Eddie's last name, it should be Welch)

- Hirano, M. 1971. River bed degradation with armouring, Trans. of Jap. Soc. Civ. Eng., 3(2), 194-195.
- Hsu, S.A. 1988. Coastal meteorology. Academic Press, San Diego, CA.
- Huynh-Thanh, S., and Temperville, A. 1991. A numerical model of the rough turbulent boundary layer in combined wave and current interaction," in Sand Transport in Rivers, Estuaries and the Sea, eds. R.L. Soulsby and R. Bettess, pp.93-100. Balkema, Rotterdam.
- Jasak H., Weller, H.G., And Gosman, A.D. 1999. High Resolution Nvd Differencing Scheme For Arbitrarily Unstructured Meshes. *International Journal* of *Numerical Methods for Fluids*, 31, 431–449.
- Johnson, I.G., 1966. Wave Boundary Layer and Function Factors. Proceedings 10th Coastal Engineering Conference. ASCE, pp. 127-148.
- Jonsson, I.G. 1990. Wave-current interactions. Chapter 7, *The Sea*. B. Le Mehaute and D. Hanes (ed.). New York, NY: John Wiley and Sons, 65-120.
- Karim M.F., and Kennedy J.F. 1982. IALLUVIAL: A Computer-Based Flow- and Sediment-Routing for Alluvial Stream and Its Application to the Missouri River. Iowa Institute of Hydraulic Research Report No. 250, University of Iowa; Iowa City, Iowa.
- Kraus, N.C., Lin, L., Batten, B.K., and Brown, G.L. 2006. Matagorda Ship Channel, Texas. jetty stability study. *Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-06-7*. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Lai, Y.G. 2010. Two-dimensional depth-averaged flow modeling with an un-structured hybrid mesh. *Journal of Hydraulic Engineering*, 136, 12-23.
- Lamb, H., 1932. *Hydrodynamics*. 6th ed. New York: Dover Publications.
- Larson, M., and Kraus, N.C. 2002. NMLONG: Numerical model for simulating longshore current. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-02-22. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Li, H., Brown, M.E., Smith, T.D., and Podoski, J.H. 2009. Evaluation of proposed channel on circulation and morphology change at Kawaihae Harbor and Pelekane Bay, Island of Hawaii, HI. Tech. Report ERDC/CHL TR-09-19. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Li, H., Reed, C.W., and Brown, M.E. 2012. Salinity calculations in the Coastal Modeling System. *Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-IV-80.* Vicksburg, MS: U.S. Army Engineer Research and Development Center.

- Lin, B.N. 1984. Current study of unsteady transport of sediment in China. Proceedings Japan-China Bilateral Seminar on River Hydraulics and Engineering Experience, July, Tokyo-Kyoto-Saporo, Japan, 337-342.
- Lin, L., Demirbilek, Z., Mase, H., Zheng, J., and Yamada, F. 2008. CMS-Wave: a nearshore spectral wave processes model for coastal inlets and navigation projects. *Tech. Report ERDC/CHL TR-08-13*. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Lin, L., Demirbilek, Z., and Mase, H. 2011a. Recent capabilities of CMS-Wave: A coastal wave model for inlets and navigation projects. *Journal of Coastal Research*, Special Issue 59, 7-14.
- Lin, L., Demirbilek, Z., Thomas, R., and Rosati III, J. 2011b. Verification and Validation of the Coastal Modeling System, Report 2: CMS-Wave, *Technical Report ERDC/CHL-TR-11-10*, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, Mississippi.
- Lin, L., Watts, I., and Demirbilek, Z. CMS-Wave Model: Part 3. 2012 Grid Nesting and Application Example for Rhode Island South Shore Regional Sediment Management Study (In Press)
- MacDonald, N.J., Davies, M.H., Zundel, A.K., Howlett, J.D., Lackey, T. C., Demirbilek, Z., and Gailani, J.Z. 2006. PTM: Particle Tracking Model; Report 1: Model theory, implementation, and example applications. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL-TR-06-20. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Mase, H., Oki, K., Hedges, T.S., and Li, H.J. 2005. Extended energybalance-equation wave model for multidirectional random wave transformation. Ocean Engineering, 32(8-9), 961-985.
- Mei, C. 1983. The Applied Dynamics of Ocean Surface Waves, John Wiley, New York.
- Militello, A., Reed, C.W., Zundel, A.K., and Kraus, N.C. 2004. Twodimensional depth-averaged circulation model CMS-M2D: Version 2.0, Report 1, Technical documentation and user's guide. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-04-02. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- Nicholson, J., and O'Connor, B.A. 1986. Cohesive sediment transport model. *Journal of Hydraulic Engineering*, 112(7): 621-640.
- Nielsen, P. 1992. Coastal bottom boundary layers and sediment transport. World Scientific, Singapore, 324 pp.
- Pacanowski, R.C. 1987. Effect of equatorial currents on surface wind stress. *Journal of Physical Oceanography*. 17, 833–838.

- Parker, G., Kilingeman, P.C., and McLean, D.G. 1982. Bed load and size distribution in paved gravel-bed streams," Journal of the Hydraulics Division, ASCE, 108(4), 544-571.
- Patankar, S. V. 1980. Numerical heat transfer and fluid flow, Hemisphere, New York.
- Phillips, O.M. 1977. The dynamics of the upper ocean. (2nd ed.). Cambridge University Press.
- Powell, M.D., Vickery, P.J., and Reinhold, T.A. (2003). "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, 422, 279-283.
- Reed, C.W., and Lin, L. 2011. "Analysis of Packery Channel Public Access Boat Ramp Shoreline Failure," Journal of Coastal Research Special Edition, Coastal Education and Research Foundation, Inc., Special Issue, 59, 150-155.
- Reed, C.W., Brown, M.E., Sánchez, A., Wu, W., and Buttolph, A.M. 2011. "The Coastal Modeling System Flow Model (CMS-Flow): Past and Present,"Journal of Coastal Research, Special Edition, 59, 1-6.
- Rhie, T.M. and Chow, A. 1983. "Numerical study of the turbulent flow past an isolated airfoil with trailing-edge separation". AIAA J., 21, 1525– 1532.
- Rosati, J.R., Frey, A.E., Brown, M.E., and Lin, L. 2011. "Analysis of Dredged Material Placement Alternatives for Bottleneck Removal, Matagorda Ship Channel, Texas," ERDC/CHL-TR-11-2, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS. <u>http://cirp.usace.army.mil/pubs/html/11-Rosati-Frey-TR-11-2.html</u>, accessed 7 June 2011.
- Ruessink, B.G., Miles, J.R., Feddersen, F., Guza, R.T. and Elgar, S., 2001. Modeling the alongshore current on barred beaches. Journal of Geophysical Research, 106(C10): 22,451-22,464.
- Saad, Y., 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal Scientific Computing, 14, 461–469.
- Saad, Y., 1994. "ILUT: a dual threshold incomplete ILU factorization," Numerical Linear Algebra with Applications, 1, 387-402.
- Saad, Y. and Schultz, M.H., 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical, Computing, 7, 856-869.
- Saad, Y. 1996. Iterative methods for sparse linear systems. PWS Publishing Company, 528 pp.
- Sakai, S., N. Kobayashi, and K. Koike. 1989. Wave breaking criterion with opposing current on sloping bottom: an extension of Goda's breaker index. *Annual Journal of Coastal Engineering* 36:56-59, JSCE (in Japanese).

- Sánchez, A., and Wu, W. 2011a. A non-equilibrium sediment transport model for coastal inlets and navigation channels. *Journal of Coastal Research*, Special Issue 59, 39-48.
- Sánchez, A., and Wu, W. 2011b. Nonuniform sediment transport modeling and Grays Harbor, WA. *Proceedings Coastal Sediments '11*, [In Press].
- Sánchez, A., Wu, W. Rosati, J.D., Demirbilek, Z. Li, L., Rosati, J., Thomas, R., Reed, C., Watts, I., and Brown, M. 2011. Validation of the Coastal Modeling System: Report III, Hydrodynamics. *Tech. Report ERDC/CHL-TR-11-10*, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
- Sánchez, A., Wu, W. Rosati, J.D., Demirbilek, Z. Li, L., Rosati, J., Thomas, R., Reed, C., Watts, I., and Brown, M. 2011. "Validation of the Coastal Modeling System: Report IV, Sediment Transport and Morphology Change. *Tech. Report ERDC/CHL-TR-11-10*, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
- Shore protection manual 1984. 4th ed., 2 Vol., U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office.
- Soulsby, R.L. 1995. "Bed shear-stresses due to combined waves and currents," in Advanced in Coastal Morphodynamics, ed M.J.F Stive, H.J. de Vriend, J. Fredsoe, L. Hamm, R.L. Soulsby, C. Teisson, and J.C. Winterwerp, Delft Hydraulics, Netherlands. 4-20 to 4-23 pp.
- Soulsby, R. L. 1997. *Dynamics of marine sands*, Thomas Telford, London.
- Soulsby, R. L. and Whitehouse, R. J. S. W. (1997): Threshold of sediment motion in coastal environments. Proc. Pacific Coasts and Ports '97 Conf., Christchurch, 1, pp. 149154. University of Canterbury, New Zealand.
- Stive, M.J.F. and De Vriend, H.J., 1994. Shear stresses and mean flow in shoaling and breaking waves. ASCE, New York, pp. 594-608.
- Svendsen, I. A. 2006. Introduction to nearshore hydrodynamics. World Scientific.
- Swart, D.H., 1976. Predictive equations regarding transports. Proc. 15th Coastal Engng. Conf., Honolulu. Coastal ASCE.
- Van Doormal, J.P., and Raithby, G.D. 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flows," Numerical Heat Transfer, 7, 147–163.
- van Rijn, L.C. 1984. Sediment transport, part I: bed load transport. Journal of Hydraulic Engineering, ASCE, 110(10), 1431-1456.
- van Rijn, L.C. 1989. *Handbook: Sediment transport by currents and waves*, Delt Hydraulics, Delt, The Netherlands.

- van Rijn, L.C. 1998. *Principles of Coastal Morphology*. AquaPublications, Amsterdam, The Netherlands.
- van Rijn, L.C. 2007a. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport. *Journal of Hydraulic Engineering*, 133(6), 649-667.
- van Rijn, L.C. 2007b. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport, *Journal of Hydraulic Engineering*, 133(6), 668-689.
- Walstra, D.J.R., Roelvink, J.A., and Groeneweg, J. 2000. Calculation of wave-driven currents in a 3D mean flow model, 27th International Conference on Coastal Engineering, Sydney, 1050-1063.
- Wang, P, Beck, T.M. . and Roberts T.M. 2011. Modeling Regional-Scale Sediment Transport and Medium-term Morphology Change at a Dual Inlet System Examined with the Coastal Modeling System (CMS): A Case Study at Johns Pass and Blind Pass, West-central Florida. *Journal of Coastal Research*, Special Issue 59, pp. 49-60.
- Watanabe, A. 1987. 3-dimensional numerical model of beach evolution. *Proceedings Coastal Sediments '87*, 802-817.
- Wu, W. 1991. The study and application of 1-D, horizontal 2-D and their nesting mathematical models for sediment transport. PhD dissertation,Wuhan Univ. of Hydraulic and Electric Engineering, Wuhan, China.
- Wu, W. 2004. Depth-averaged 2-D numerical modeling of unsteady flow and nonuniform sediment transport in open channels. Journal of Hydraulic Engineering, ASCE, 135(10) 1013-1024.
- Wu, W. 2007. Computational River Dynamics. Taylor & Francis, 494 p.
 Wu, W., Sánchez, A., Zhang, M. 2010. An implicit 2-D depth-averaged finite volume model of flow and sediment transport in coastal waters. *Proceeding of the International Conference on Coastal Engineering*, North America, 1 Feb 2011, Available at: http://journals.tdl.org/ICCE/article/view/1431. Date accessed: June 12.
- Wu, W., Wang, S.S.Y., and Jia, Y. 2000. Nonuniform sediment transport in alluvial rivers. *Journal of Hydraulic Research*, IAHR, 38(6), 427-434.
- Wu, W., Altinakar, M., and Wang, S.S.Y. 2006. Depth-averaged analysis of hysterersis between flow and sediment transport under unsteady conditions. *International Journal of Sediment Research*, 21(2), 101-112.
- Wu, W., Sánchez, A., and Mingliang, Z. 2010. An implicit 2-D depthaveraged finite-volume model of flow and sediment transport in coastal waters. *Proceeding of the International Conference on Coastal Engineering*, [In Press]

- Wu, W., Sánchez, A., and Mingliang, Z. 2011. An implicit 2-D shallow water flow model on an unstructured quadtree rectangular grid," *Journal of Coastal Research*, [In Press]
- Zarillo, G.A., Brehin F. G. A. 2007. Hydrodynamic and Morphologic Modeling at Sebastian Inlet, FL. *Proceedings of Coastal Sediments '07*, New Orleans, LA, ASCE Press, 1297-1311
- Zheng, J.,H. Mase, Z. Demirbilek, and L. Lin. 2008. Implementation and evaluation of alternative wave breaking formulas in a coastal spectral wave model. *Ocean Engineering*
- Zhu, J. 1991. A low-diffusive and oscillation-free convection scheme. *Communications in Applied Numerical Methods*, 7, 225-232.
- Zwart, P.J., Raithby, G. D., Raw, M. J. 1998. "An integrated space-time finite volume method for moving boundary problems", *Numerical Heat Transfer*, B34, 257.
- Zundel, A.K., 2006. Surface-water Modeling System reference manual Version 9.0. Brigham Young University Environmental Modeling Research Laboratory, Provo, UT.

8 Appendix A: Description of Input Files

CMS-Flow

Telescoping Grid File (*.tel)

The telescoping Grid File is saved in SMS 11.0 when saving a telescoping grid. The format of the file is similar to the M2D grid file (*.m2g). The first line contains a header which says "CMS-Telescoping". The second line contains four elements corresponding to the (1) grid orientation *theta*, (2) grid origin in the x-direction x_0 , (3) grid origin in the y-direction y_0 , and (4) total number of cells N (including inactive cells). Lines 3 through N+3 contain the following column data:

Column	Symbol	Variable
1	i	Sequential index
2	x	Cell-centered x-coordinate of cell <i>i</i> in m
3	у	Cell-centered y-coordinate of cell <i>i</i> in m
4	Δx	Grid size in x-direction of cell <i>i</i> in m
5	Δy	Grid size in y-direction of cell <i>i</i> in m
6	iN1	Index of first neighboring cell to the North direction
7	iN2	Index of second neighboring cell to the North direction
8	iE1	Index of first neighboring cell to the East direction
9	iE2	Index of second neighboring cell to the East direction
10	iS1	Index of first neighboring cell to the South direction
11	iS2	Index of second neighboring cell to the South direction
12	iW1	Index of first neighboring cell to the West direction
13	iW2	Index of second neighboring cell to the West direction
14	Depth	Still water depth in m. Positive values indicate wet cells and dry cells indicate dry cells.

Table A1. Description of column data in	the CMS-Flow Telescoping Grid File.
---	-------------------------------------

Important Notes:

- Directions of neighboring cells are relative to the local grid axis (i.e. positive in x = East, negative in x = West, positive in y = North, and negative in y = South).
- Indexes equal to 0 indicate the absence of a neighboring cell.
- If a cell is assigned as an inactive cell, -999
- Because the file is ASCII, the file size can be relatively large and difficult to view in WordPad or Notepad. To view the telescoping grid file, it is recommended to use a more advanced text editor such as UltraEdit or Textpad.

An example of the first 6 lines of a CMS-Flow telescoping grid file is provided below.

CMS-Telescoping

 0
 -2.32
 -0.01
 13522

 1
 0.085
 0.235
 0.17
 0.094
 17
 0
 2
 0
 169
 168
 0
 0
 0.188531

 2
 0.255
 0.235
 0.17
 0.094
 18
 0
 3
 0
 171
 170
 1
 0
 0.188543

 3
 0.425
 0.235
 0.17
 0.094
 19
 0
 4
 0
 173
 172
 2
 0
 -999

 4
 0.595
 0.235
 0.17
 0.094
 20
 0
 5
 0
 174
 3
 0
 0.188566

A simple Matlab script is provided below to read the *.tel file.

```
function out = read_cmstel(telfile)
% out = read_cmstel(telfile)
% Reads a CMS telescoping grid file
% and output all variables to a structure array
% written by Alex Sanchez, USACE
fid = fopen(telfile,'r');
fgets(fid); %Skip header line
data=fscanf(fid,'%f %f %f %d',4);
out.ncells = data(4);
out.x0 = data(2); out.y0 = data(3); out.angle = data(1);
data=fscanf(fid,'%d %f %f %f %f %d %d %d %d %d %d %d %f',...
    [14,out.ncells])';
fclose(fid);
out.id = data(:,1); out.x = data(:,2); out.y = data(:,3);
out.dx = data(:,4); out.dy = data(:,5);
out.iloc = data(:, 6:13);
out.depth = data(:,14);
return
```

XMDF CMS-Flow Grid File (*_grid.h5)

The SMS interface can save a scatter set in a binary format called the eXtensible Model Data Format (XMDF). The XMDF format (Butler et al. 2007) stores data in a much smaller file and decreases the time to load large data files, such as SHOALS or LIDAR surveys. Operation in XMDF format rather than ASCII format greatly reduces time of input and output operations.

XMDF CMS-Flow Model Parameters File (*_mp.h5)

TBC

9 Appendix B: Description of Output Files

XMDF Solution Files (Binary Format)

By default, CMS global solution output files are written in a binary format called XMDF which is based on the HDF5 format which was developed to allow for portability between Windows and non-windows platforms. At present, the SMS reads and writes XMDF files. Additional binary formats are under review to be implemented in CMS for compatibility with other numerical models.

To make post-processing a little easier, CMS developers have written a Matlab code, shown below, that reads in the CMS XMDF solution file.

```
function varargout = read_cmsh5sol(filename,varargin)
% sol = read_cmsh5out(filename,...'dataset1','dataset2',...)
%
%DESCRIPTION:
% Reads a CMS solution file and creates
% a structure variable containing the solution
% datasets values and times
%TNPUT:
% filename - input file name including full path
% varargin - dataset names
%OUTPUT:
% sol - structure variable containing dataset values and times
% varargout - variable length datasets corresponding to varargin
2
%USAGE:
% filename = 'test sol.h5';
% sol = read_cmsh5sol(filename);
% wse = read_cmsh5sol(filename,'Water_Elevation');
% [wse,uv] = read_cmsh5sol(filename,'Water_Elevation',...
            Current_Velocity');
2
% written by Alex Sanchez, USACE-ERDC-CHL
info = hdf5info(filename);
s = info.GroupHierarchy.Groups.Groups;
sol = struct();
for i=1:length(s);
   field = s(i).Name;
   ind = findstr(field, '/');
   field = field(ind(end)+1:end);
   if nargin>1 %select only few datasets
        for k=1:nargin-1
            if strcmpi(field,varargin{k})
                varargout{k}.Times = ...
                    double(hdf5read(s(i).Datasets(3)));
                varargout{k}.Values = ...
```

```
double(hdf5read(s(i).Datasets(4)));
                continue
            end
        end
    else %write all datasets
        field = regexprep(field, '(', '_');
        field = regexprep(field,')', '');
        field = regexprep(field, ' ', '');
        try
            sol = setfield(sol,field,'Times',...
                double(hdf5read(s(i).Datasets(3)));
            sol = setfield(sol,field,'Values',...
                double(hdf5read(s(i).Datasets(4))));
        catch
            try
                for j=1:length(s(i).Groups)
                    field = s(i).Groups(j).Name;
                    ind = findstr(field, '/');
                    field = field(ind(end)+1:end);
                    field = regexprep(field, '(', '_');
                    field = regexprep(field,')', '');
                    field = regexprep(field, ' ', '');
                    val = double(hdf5read( ...
                        s(i).Groups(j).Datasets(3)));
                    sol = setfield(sol,field,'Times',val);
                    val = double(hdf5read( ...
                        s(i).Groups(j).Datasets(4)));
                    sol = setfield(sol,field,'Values',val);
                end
            catch
                warning(['Unable to read ',field])
            end
        end
    end
end
if nargin>1 && nargout==1
    for k=1:nargin-1
        sol.(varargin{k}) = varargout{k};
    end
elseif nargin==1
    simlabel = info.GroupHierarchy.Groups.Name(2:end);
    sol.Simulation_Label = simlabel;
    varargout{1} = sol;
end
return
```

SMS Super Files (ASCII Format)

Another option in CMS is to write out solutions in an ASCII format. CMS developers decided to use a format previously implemented in the SMS for writing large ASCII datasets. This format requires three files to be present for each solution dataset: a super file, a scatter point file, and the scatter data file.

- 1. The super file simply contains a link to the scatter point file which stores the XY coordinates of each solution point. This file has a ".sup" file extension.
- 2. The scatter point file contains the name associated with this output file, the total number of solution points and a list of the XY coordinates of each solution point. This file has a ".xy" file extension.
- 3. The scatter data file typically contains information such as the name associated with this output file (same as the name given in 2. Above), reference time, time units, and then scalar or vector records for each output interval as specified in the parameter file. This file has a ".dat" file extension.

To activate ASCII output for solutions, the user must define the "GLOBAL_SUPER_FILES ON" card in the CMS parameter file.

Time Series (Observation Point) Files

As an alternative to frequent output intervals in the global solutions, which are often quite large after completion, CMS has the option to output information for individual locations inside the domain into ASCII files. These are referred to as observation points. Because information is stored for a very small selection of points, users can define this output to be at much smaller time intervals without resulting in very large files.

Individual scalar files are written for each type of information that is to be written. Presently, these types are: current velocity U and V components, water surface elevation, flow rates in X and Y direction, sediment transport rates in X and Y direction, suspended load sediment concentration, salinity concentration, and bed composition. Each file may contain output

for one or more cells as defined in the SMS observation cell selection procedure. A flagged value of '-999.0000' is given for any computational cell that is considered dry at each output time. A partial example of the file format is shown below:

%	time(hrs)	22883	60601	62753
	0.0000	0.0000	-999.0000	0.0000
	0.5000	0.0078	-999.0000	0.0077
	1.0000	0.0500	-999.0000	0.0495
	2062.5000	1.1605	1.1216	1.1614
	2063.0000	1.3580	1.3414	1.3580
	2063.5000	1.4783	1.4835	1.4788
	2064.0000	1.5100	1.5406	1.5174

In each file, there is a header row which gives a description of the contents of the following rows. In the example above, the first column contains "time in hours", followed by three columns giving the cell numbers as saved by the SMS interface. There will be one row per output time.