CMS-Flow:Ripple Dimensions: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Rdchlmeb moved page CMS-Flow: Ripple Dimensions to CMS-Flow:Ripple Dimensions: Getting rid of the space after the colon just to be consistent with other entries.) |
||
(6 intermediate revisions by one other user not shown) | |||
Line 13: | Line 13: | ||
{{Equation|<math> | {{Equation|<math> | ||
H_{r,w} = \left\{\begin{align} | H_{r,w} = \left\{\begin{align} | ||
&0.22A_w \quad \quad for \ \psi_w < 10 \\ | &0.22A_w \quad \quad\quad\quad\quad\quad\quad\quad\quad for \ \psi_w < 10 \\ | ||
&2.8 \ x\ 10^{-13}(250 - \psi_w)^5 A_w \quad for \ 10 \ | &2.8 \ x\ 10^{-13}(250 - \psi_w)^5 A_w \quad for \ 10 \ \leq \psi_w <250 \\ | ||
&0 \quad \quad \quad \quad \quad for \ 250 \leq \psi_w | &0 \quad \quad \quad \quad \quad\quad\quad\quad\quad\quad\quad\quad for \ 250 \leq \psi_w | ||
\end{align} \right.</math>|4}} | \end{align} \right.</math>|4}} | ||
{{Equation|<math> | |||
L_{r,w} = \left\{\begin{align} | |||
&1.25 A_w \quad \quad\quad\quad\quad\quad\quad\quad for \ \psi_w < 10 \\ | |||
&1.4 \ x \ 10^{-6}(250 - \psi_w)^{2.5} \quad for \ 10 \leq \psi_w < 250\\ | |||
&0 \quad \quad \quad \quad\quad\quad\quad\quad\quad\quad for \ 250 \leq \psi_w\end{align} | |||
\right.</math>|5}} | |||
where: | |||
: A<sub>w</sub> = semi-orbital excurision = <math>\frac{u_w T}{2 \pi} [m/s]</math> | |||
:<math>\psi_w</math> = wave mobility parameter = <math> \frac{u_w ^2}{(s-1)gd_{50}}[-]</math> | |||
:d<sub>50</sub> = median grain size [m] | |||
:s = sediment specific gravity [-] | |||
:g = gravitational constant (9.81 m/s<sup>2</sup>) | |||
:u<sub>w</sub> = bottom orbital velocity [m/s] (for random waves <math>u_w = \sqrt{2} u_{rms})</math> | |||
:T = wave period [s] (for random waves T = T<sub>p</sub>). | |||
The current- and wave-related ripple height and length are used in calculating the bed form roughness for use in the Lund-CIRP transport formula. | |||
= References = | = References = | ||
*Soulsby, R. L. 1997. Dynamics of marine sands. London, England: Thomas Telford Publications. | |||
*van Rijn, L. C. 1984b. Sediment transport, Part II: Suspended-load transport. Journal of Hydraulic Engineering, ASCE 110(11):1613–1641. | |||
*van Rijn, L. C. 1989. Handbook: Sediment transport by currents and waves. Delft, The Netherlands: Delft Hydraulics. | |||
---- | ---- | ||
[[CMS#Documentation_Portal | Documentation Portal]] | [[CMS#Documentation_Portal | Documentation Portal]] |
Latest revision as of 15:34, 23 January 2023
The bed forms calculated by CMS are the wave- and current-related ripples. The ripple height (used to calculate the mixing layer thickness) is estimated as the maximum of the current- and wave-related ripple heights
(1) |
The current-related ripple height and length are calculated as (Soulsby 1997)
(2) |
(3) |
The wave-related ripple height and length are calculated using the expressions proposed by van Rijn (1984b, 1989):
(4) |
(5) |
where:
- Aw = semi-orbital excurision =
- = wave mobility parameter =
- d50 = median grain size [m]
- s = sediment specific gravity [-]
- g = gravitational constant (9.81 m/s2)
- uw = bottom orbital velocity [m/s] (for random waves
- T = wave period [s] (for random waves T = Tp).
The current- and wave-related ripple height and length are used in calculating the bed form roughness for use in the Lund-CIRP transport formula.
References
- Soulsby, R. L. 1997. Dynamics of marine sands. London, England: Thomas Telford Publications.
- van Rijn, L. C. 1984b. Sediment transport, Part II: Suspended-load transport. Journal of Hydraulic Engineering, ASCE 110(11):1613–1641.
- van Rijn, L. C. 1989. Handbook: Sediment transport by currents and waves. Delft, The Netherlands: Delft Hydraulics.