CMS-Wave:Wave-current Interaction: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<big>
Under Construction
== Wave-current Interaction ==
== Wave-current Interaction ==
The characteristic velocities  <math>c_x</math>,  <math>c_y</math>, and <math>c_{\theta}</math> are calculated as
The characteristic velocities  <math>c_x</math>,  <math>c_y</math>, and <math>c_{\theta}</math> are calculated as
 
{{Equation|<math>c_x = c_g \cos \theta + U </math>|1}}
\begin{equation} c_x = c_g \cos \theta + U \end{equation}
{{Equation|<math>c_y = c_g \sin \theta + V </math>|2}}
\begin{equation} c_y = c_g \sin \theta + V \end{equation}    
{{Equation|<math>
\begin{equation} c_{\theta} = \frac{\sigma}{\sinh 2 k h}
c_{\theta} = \frac{\sigma}{\sinh 2 k h}
\biggl( \sin \theta \frac{\partial h}{\partial x}  - \cos \theta \frac{\partial h}{\partial y } \biggr)
\biggl( \sin \theta \frac{\partial h}{\partial x}  - \cos \theta \frac{\partial h}{\partial y } \biggr)
+ \cos \theta \sin \theta \frac{\partial U}{\partial x}
+ \cos \theta \sin \theta \frac{\partial U}{\partial x}
Line 13: Line 10:
+ \sin ^2 \theta \frac{\partial V}{\partial x}  
+ \sin ^2 \theta \frac{\partial V}{\partial x}  
- \cos \theta \sin \theta \frac{\partial V}{\partial y}  
- \cos \theta \sin \theta \frac{\partial V}{\partial y}  
\end{equation}    
</math>|3}}


The dispersion relationships between the relative angular frequency σ, the absolute angular frequency ω, the wave number vector k, and the current velocity vector U = U2 +V2 are (Jonsson 1990)
The dispersion relationships between the relative angular frequency σ, the absolute angular frequency ω, the wave number vector k, and the current velocity vector U = U2 +V2 are (Jonsson 1990)


{| border="1"
{| border="1"
Line 39: Line 35:


----
----
</big>
[[CMS#Documentation_Portal | Documentation Portal]]
[[CMS#Documentation_Portal | Documentation Portal]]
[[category:CMS-Wave]]

Latest revision as of 16:13, 23 January 2023

Wave-current Interaction

The characteristic velocities cx, cy, and cθ are calculated as

  cx=cgcosθ+U (1)
  cy=cgsinθ+V (2)
  cθ=σsinh2kh(sinθhxcosθhy)+cosθsinθUxcos2θUy+sin2θVxcosθsinθVy (3)

The dispersion relationships between the relative angular frequency σ, the absolute angular frequency ω, the wave number vector k, and the current velocity vector U = U2 +V2 are (Jonsson 1990)

Symbol Description
c Wave celerity
cg Wave group velocity
σ Wave frequency
E Spectral wave density
k Wave number
h Total water depth
U Depth-averaged current velocity in x-direction
V Depth-averaged current velocity in y-direction

Documentation Portal