CMS-Flow:Eddy Viscosity: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
In CMS-Flow eddy viscosity is calculated as the sum of a base value <math>\nu_{0}</math>, the current-related eddy viscosity   <math>\nu_c</math> and the wave-related eddy viscosity <math>\nu_w</math>
The term ''eddy viscosity'' arises from the fact that small-scale vortices or eddies on the order of the grid cell size are not resolved, and only the large-scale flow is simulated. The eddy viscosity is intended to simulate the dissipation of energy at smaller scales than the model can simulate. In the nearshore environment, large mixing or turbulence occurs due to waves, wind, bottom shear, and strong horizontal gradients. Therefore, the eddy viscosity is an important parameter which can have a large influence on the calculated flow field and resulting sediment transport. In CMS-Flow, the total eddy viscosity <math>(v_t )</math> is equal to the sum of three parts: 1) a base value <math>(v_0 )</math>; 2) the current-related eddy viscosity <math>(v_c )</math>; and 3) the wave-related eddy viscosity <math>(v_w)</math> defined as follows:
      {{Equation|<math> \nu_t  = \nu_0 + \nu_c + \nu_w </math> |2=1}}
 
{{Equation| <math> \nu_t  = \nu_0 + \nu_c + \nu_w </math> |1}}
 
The base value <math>(v_0 )</math> is approximately equal to the kinematic viscosity <math>(\sim 1.81 \ x \ 10^{-6} \ m^2 /s)</math> but may be changed by the user. The other two components <math>(v_c \ and\  v_w )</math> are described in the sections below.
 


The base value for the eddy viscosity is  approximately equal to the kinematic eddy viscosity can be changed using  the advanced cards (Click  [http://cirp.usace.army.mil/wiki/CMS-Flow_Eddy_Viscosity here] for  further details).
==Current-Related Eddy Viscosity Component==
==Current-Related Eddy Viscosity Component==
There are four options for the current-related eddy viscosity: FALCONER,  PARABOLIC, SUBGRID, and MIXING-LENGTH. The default turbulence model is the subgrid model, but may be changed with the advanced card  TURBULENCE_MODEL.  
 
There are four algebraic models for the current-related eddy viscosity: 1) Falconer Equation; 2) depth-averaged parabolic; 3) subgrid; and 4) mixing-length. The default turbulence model is the subgrid model but may be changed by the user.


=== Falconer Equation ===
=== Falconer Equation ===
The  Falconer (1980) equation is  the method is the default method used in the previous version of CMS,  known as M2D.
The  Falconer (1980) equation was default method used in earlier versions of CMS (Militello et al. 2004)for the current-related eddy viscosity. The equation is given by  
The first is the  Falconer (1980) equation  given by
 
      {{Equation|<math> \nu_c =  0.575c_b|U|h </math>|2=2}}
{{Equation|<math>\nu_c =  0.575c_b Uh </math>|2}}
 
where  <math>c_b</math> is the bottom friction  coefficient,  <math>U</math> is the depth-averaged current velocity magnitude, and ''h'' is the total water depth.


where <math>c_b</math> is the bottom friction  coefficient,  <math>U</math> is the depth-averaged current  velocity, and  <math>h</math> is the total water depth.
=== Depth-averaged Parabolic Model ===


===  Parabolic Model ===
The second option is the parabolic model  given by
The second option is the parabolic model  given by
      {{Equation|<math> \nu_c = c_1 u_{*} h   </math>|2=3}}
{{Equation|<math>v_c = c_v u_{*c} h </math>|3}}


where <math>c_1</math> is approximately equal to <math>\kappa/6</math>.
where <math>u_{*c} = \sqrt{\tau_c / \rho}</math> is the bed shear velocity, and <math>c_v</math> is approximately equal to <math>\kappa/6=0.0667</math> but is set as a calibrated parameter whose value can be up to 1.0 in irregular waterways with weak meanders or even larger for strongly curved waterways.


===  Subgrid Turbulence Model ===
===  Subgrid Model ===
The third  option for calculating  <math>\nu_c</math> is the subgrid  turbulence model given by
The third  option for calculating  <math>\nu_c</math> is the subgrid  turbulence model given by
      {{Equation|<math> \nu_{c} = c_1 u_{*} h  + c_1 \Delta |\bar{S}| </math>|2=4}}
{{Equation|<math>v_c = c_v u_{*c} h  + (c_h \Delta)^2 |\bar{S}| </math>|4}}
 
where:
 
:<math>c_v</math> = vertical shear coefficient [-]
 
:<math>c_h</math> = horizontal shear coefficient [-]
 
:<math>\Delta</math>  = (average) grid size [m]


where <math>c_1</math> and <math>c_2</math> are empirical coefficients related the turbulence produced by the bed and horizontal velocity gradients, and <math>\Delta</math> is the average grid area. <math>c_1</math> is approximately equal to 0.0667 (default) but may vary from 0.01-0.2. <math>c_{2}</math> is equal to approximately the Smagorinsky coefficient and may vary from 0.1 to 0.3 (default is 0.2). <math>|\bar{S}|</math> is equal to
:<math>|\bar{S}| = \sqrt{2e_{ij}e_{ij}}</math>
        {{Equation|<math> |\bar{S}| = \sqrt{2\bar{S}_{ij}\bar{S}_{ij}}
  = \sqrt{
2\biggl( \frac{ \partial U}{\partial  x} \biggr) ^2  +
  2\biggl( \frac{ \partial V}{\partial  y} \biggr) ^2  +
\biggl(  \frac{ \partial U}{\partial y} +
\frac{ \partial V}{\partial x}  \biggr) ^2 } </math> |2=7}}


and
:<math>e_{ij}</math>= deformation (strain rate) tensor <math>= \frac{1}{2} \biggl( \frac{  \partial V_i} { \partial x_j} +\frac{ \partial V_j} { \partial x_i}  \biggr)</math>
        {{Equation|<math> \bar{S}_{ij} = \frac{1}{2} \biggl( \frac{  \partial U_i} { \partial x_j} +\frac{ \partial U_j} { \partial x_i}  \biggr) </math> |2=8}}
 
The empirical coefficients <math>c_v</math> and <math>c_h</math> are related to the turbulence produced by the bed shear and horizontal velocity gradients. The parameter <math>c_v</math> is approximately equal to <math>\kappa/6=0.0667</math> (default) but may vary from 0.01 to 0.2. The variable <math>c_h</math> is equal to approximately the Smagorinsky coefficient (Smagorinsky 1963) and may vary between 0.1 and 0.3 (default is 0.2).


The  subgrid turbulence model parameters may be changed in the advanced  cards  EDDY_VISCOSITY_BOTTOM, and EDDY_VISCOSITY_HORIZONTAL.  Click  [http://cirp.usace.army.mil/wiki/CMS-Flow_Eddy_Viscosity here] for further details.


=== Mixing Length Model ===
=== Mixing Length Model ===
The Mixing Length Model implemented in CMS includes a component due to the vertical shear and is given by  
The Mixing Length Model implemented in CMS for the current-related eddy viscosity includes a component due to the vertical shear and is given by (Wu 2007)
{{Equation|<math> \nu_{c} = \sqrt{ (c_1 u_{*} h)^2  + (l_h^2 |\bar{S}|)^2}   </math>|2=9}}
 
{{Equation|<math>\nu_{c} = \sqrt{ (c_v u_{*c} h)^2  + (l_h^2 |\bar{S}|)^2}</math>|7}}
 
where:
 
:<math> l_h </math> = the mixing length <math>( = \kappa\ \min(c_h h,y^'))\ [m]</math>
 
:<math> y^' </math> =distance to the nearest wall [m]
 
:<math>c_h</math> = horizontal shear coefficient [-]


where the mixing length <math> l_h </math> is determined by <math> l_h = \kappa \min{(c_2h,y)}</math>, with <math> y </math> being the distance to the nearest wall and <math> c_2 </math> is an empirical coefficient between 0.3-1.2. Eq. (9) takes into account the effects of bed shear and horizontal velocity gradients respectively through the first and second terms on its right-hand side. It has been found that the modified mixing length model is better than the depth-averaged parabolic eddy viscosity model that accounts for only the bed shear effect.
The empirical coefficient <math>c_h</math> is usually between 0.3 and1.2. The effects of bed shear and horizontal velocity gradients, respectively, are taken into account through the first and second terms on the right-hand side of Equation (7). It has been found that the modified mixing length model is better than the depth-averaged parabolic eddy viscosity model that accounts for only the bed shear effect.


==Wave-Related Eddy Viscosity  ==
==Wave-Related Eddy Viscosity  ==
The wave component of the eddy viscosity is separated into two components  
The wave component of the eddy viscosity is separated into two components  
      {{Equation|<math> \nu_w =  c_3 u_w H_s +  c_4 h \biggl( \frac{D_{br}}{\rho} \biggr) ^{1/3} </math>|2=10}}
{{Equation|<math>\nu_w =  c_{wf} u_{ws} H_s +  c_{br} h \biggl( \frac{D_{br}}{\rho} \biggr) ^{1/3}</math>|8}}
 
where
 
:<math>c_{wf}</math> = wave bottom friction coefficient for eddy viscosity [-]
 
:<math>u_{ws}</math> = peak bottom orbital velocity [m/s] based on the significant wave height <math>H_s</math> [m] and peak wave period <math>T_p</math> [s]
 
:<math>c_{br}</math> = wave breaking coefficient for eddy viscosity [-]
 
:<math>D_{br}</math> = wave breaking dissipation [N/m/s].
 
The first term on the righ-hand side of Equation (8) represents the component due to bottom friction and the second term represents the component due to wave breaking. The coefficient <math>c_{wf}</math> is approximately equal to 0.5 and may vary from 0.5 to 2.0. The coefficient <math>c_{br}</math>  is approximately equal to 0.1 and may vary from 0.04 to 0.15.


where <math>c_3</math> and <math>c_4</math>  are empirical coefficients, <math> H_s </math> is the significant wave height and  <math>u_w</math> is bottom orbital velocity based on the  significant wave height. The first term on the R.H.S. of Eq. (10) represents the component due to bottom friction and the second term represents the component due to wave breaking. The coefficient <math>c_3</math> is approximately equal to 0.1 and may vary from 0.05 to 0.2. The coefficient <math>c_4</math>  is approximately equal to 0.08 and may vary from 0.04 to 0.15.
----


== References ==
== References ==
* LARSON, M.; HANSON, H., and KRAUS, N. C., 2003. Numerical modeling of beach topography change. Advances in Coastal Modeling, V.C. Lakhan (eds.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365.
* LARSON, M.; HANSON, H., and KRAUS, N. C., 2003. Numerical modeling of beach topography change. Advances in Coastal Modeling, V.C. Lakhan (eds.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365.
 
* Militello, A., C. W. Reed, A. K. Zundel, and N. C. Kraus. 2004. Two-dimensional depth-averaged circulation model M2D: Version 2.0, Report 1, Technical documentation and user's guide. ERDC/CHL TR-04-02. Vicksburg, MS: US Army Engineer Research and Development Center.
* Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Monthly Weather Review 93(3):99–164.
----
----
[[CMS#Documentation_Portal |  Documentation Portal]]
[[CMS#Documentation_Portal |  Documentation Portal]]

Latest revision as of 20:54, 22 July 2024

The term eddy viscosity arises from the fact that small-scale vortices or eddies on the order of the grid cell size are not resolved, and only the large-scale flow is simulated. The eddy viscosity is intended to simulate the dissipation of energy at smaller scales than the model can simulate. In the nearshore environment, large mixing or turbulence occurs due to waves, wind, bottom shear, and strong horizontal gradients. Therefore, the eddy viscosity is an important parameter which can have a large influence on the calculated flow field and resulting sediment transport. In CMS-Flow, the total eddy viscosity is equal to the sum of three parts: 1) a base value ; 2) the current-related eddy viscosity ; and 3) the wave-related eddy viscosity defined as follows:

  (1)

The base value is approximately equal to the kinematic viscosity but may be changed by the user. The other two components are described in the sections below.


Current-Related Eddy Viscosity Component

There are four algebraic models for the current-related eddy viscosity: 1) Falconer Equation; 2) depth-averaged parabolic; 3) subgrid; and 4) mixing-length. The default turbulence model is the subgrid model but may be changed by the user.

Falconer Equation

The Falconer (1980) equation was default method used in earlier versions of CMS (Militello et al. 2004)for the current-related eddy viscosity. The equation is given by

  (2)

where is the bottom friction coefficient, is the depth-averaged current velocity magnitude, and h is the total water depth.

Depth-averaged Parabolic Model

The second option is the parabolic model given by

  (3)

where is the bed shear velocity, and is approximately equal to but is set as a calibrated parameter whose value can be up to 1.0 in irregular waterways with weak meanders or even larger for strongly curved waterways.

Subgrid Model

The third option for calculating is the subgrid turbulence model given by

  (4)

where:

= vertical shear coefficient [-]
= horizontal shear coefficient [-]
= (average) grid size [m]
= deformation (strain rate) tensor

The empirical coefficients and are related to the turbulence produced by the bed shear and horizontal velocity gradients. The parameter is approximately equal to (default) but may vary from 0.01 to 0.2. The variable is equal to approximately the Smagorinsky coefficient (Smagorinsky 1963) and may vary between 0.1 and 0.3 (default is 0.2).


Mixing Length Model

The Mixing Length Model implemented in CMS for the current-related eddy viscosity includes a component due to the vertical shear and is given by (Wu 2007)

  (7)

where:

= the mixing length
=distance to the nearest wall [m]
= horizontal shear coefficient [-]

The empirical coefficient is usually between 0.3 and1.2. The effects of bed shear and horizontal velocity gradients, respectively, are taken into account through the first and second terms on the right-hand side of Equation (7). It has been found that the modified mixing length model is better than the depth-averaged parabolic eddy viscosity model that accounts for only the bed shear effect.

Wave-Related Eddy Viscosity

The wave component of the eddy viscosity is separated into two components

  (8)

where

= wave bottom friction coefficient for eddy viscosity [-]
= peak bottom orbital velocity [m/s] based on the significant wave height [m] and peak wave period [s]
= wave breaking coefficient for eddy viscosity [-]
= wave breaking dissipation [N/m/s].

The first term on the righ-hand side of Equation (8) represents the component due to bottom friction and the second term represents the component due to wave breaking. The coefficient is approximately equal to 0.5 and may vary from 0.5 to 2.0. The coefficient is approximately equal to 0.1 and may vary from 0.04 to 0.15.


References

  • LARSON, M.; HANSON, H., and KRAUS, N. C., 2003. Numerical modeling of beach topography change. Advances in Coastal Modeling, V.C. Lakhan (eds.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365.
  • Militello, A., C. W. Reed, A. K. Zundel, and N. C. Kraus. 2004. Two-dimensional depth-averaged circulation model M2D: Version 2.0, Report 1, Technical documentation and user's guide. ERDC/CHL TR-04-02. Vicksburg, MS: US Army Engineer Research and Development Center.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Monthly Weather Review 93(3):99–164.

Documentation Portal