CMS-Flow:Bottom Friction: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 35: Line 35:
       {{Equation| <math> X=\frac{\tau_w}{\tau_c + \tau_w} </math>  |2=5}}
       {{Equation| <math> X=\frac{\tau_w}{\tau_c + \tau_w} </math>  |2=5}}


----
----
----


</big>
</big>
[[CMS#Documentation_Portal | Documentation Portal]]
[[CMS#Documentation_Portal | Documentation Portal]]

Revision as of 22:25, 24 August 2010

Bottom Friction

Flow without Waves

In the situation without waves, the bottom shear stress is calculated based on the quadratic formula

  (1)


where is the bottom friction coefficient, is the depth-averaged current velocity.

Flow with Waves

There are five models available in CMS for calculating the combined wave and current mean shear stress:

  1. Quadratic formula (named W09 in CMS)
  2. Soulsby (1995) two coefficient data fit (named DATA2 in CMS)
  3. Soulsby (1995) thirteen coefficient data fit (named DATA13 in CMS)
  4. Fredsoe (1984) (named F84 in CMS)
  5. Huynh-Thanh and Temperville (1991) (named HT91 in CMS)

In this case the simplified expression for the combined wave and current mean shear stress is given by

  (2)


where is the wave bottom orbital velocity based on the significant wave height, and is an empirical coefficient approximately equal to 0.5 (default).


For all of the other models, the mean shear stress is calculated as

  (3)


where is the nonlinear wave enhancement factor which is parameterized in the generalized form (Soulsby, 1995)

  (4)


where , , and are coefficients that depend on the model selected and

  (5)


Documentation Portal