Statistics: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Given the observed values x and calculated values y, there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below. | Given the observed values x and calculated values y, there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below. | ||
Brier Skill Score | *Brier Skill Score | ||
{{Equation|<math> BSS = 1 - \frac{\bigg\langle \big(x-y\big)^2 \bigg\rangle}{\bigg\langle \big(x-x_0\big)^2 \bigg\rangle } </math>|2=1}} | {{Equation|<math> BSS(x,y) = 1 - \frac{\bigg\langle \big(x-y\big)^2 \bigg\rangle}{\bigg\langle \big(x-x_0\big)^2 \bigg\rangle } </math>|2=1}} | ||
*Root-Mean-Squared Error is defined as | |||
{{Equation|<math> RMSE = \sqrt{ \bigg\langle \big( x - y \big)^2 \bigg\rangle } </math>|2=2}} | {{Equation|<math> RMSE(x,y) = \sqrt{ \bigg\langle \big( x - y \big)^2 \bigg\rangle } </math>|2=2}} | ||
*Relative-Root-Mean-Squared Error | |||
{{Equation|<math> | {{Equation|<math> RRMSE(x,y,x_0) = RMSE(x,y)/RMSE(x,x0) </math>|2=3}} | ||
*Relative-Root-Mean-Squared Error Score | |||
{{Equation|<math> R = \frac { \langle xy \rangle - \langle x \rangle \langle y \rangle }{ \sqrt{ \langle x^2 \rangle - \langle x \rangle ^2} \sqrt{ \langle y^2 \rangle - \langle y \rangle ^2} } </math>|2= | {{Equation|<math> RMSES(x,y,x_0 = 1-RRMSE(x,y,x_0) </math>|2=4}} | ||
*Relative-Mean-Absolute Error | |||
{{Equation|<math> RMAE(x,y) = \frac { \bigg\langle \big| x - y \big| \bigg\rangle }{ \big| x \big| } </math>|2=5}} | |||
*Relative-Mean-Absolute Error Score | |||
{{Equation|<math> RMAES(x,y,x_0) = RMAE(x,y)/RMAE(x,x_0) </math>|2=6}} | |||
*Correlation coefficient is defined as | |||
{{Equation|<math> R = \frac { \langle xy \rangle - \langle x \rangle \langle y \rangle }{ \sqrt{ \langle x^2 \rangle - \langle x \rangle ^2} \sqrt{ \langle y^2 \rangle - \langle y \rangle ^2} } </math>|2=7}} | |||
The bias is given by | The bias is given by | ||
{{Equation|<math> B = \langle x \rangle - \langle y \rangle </math>|2= | {{Equation|<math> B = \langle x \rangle - \langle y \rangle </math>|2=8}} | ||
---- | ---- | ||
[[CMS#Documentation_Portal | Documentation Portal]] | [[CMS#Documentation_Portal | Documentation Portal]] |
Revision as of 18:07, 6 December 2010
Given the observed values x and calculated values y, there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below.
- Brier Skill Score
(1) |
- Root-Mean-Squared Error is defined as
(2) |
- Relative-Root-Mean-Squared Error
(3) |
- Relative-Root-Mean-Squared Error Score
(4) |
- Relative-Mean-Absolute Error
(5) |
- Relative-Mean-Absolute Error Score
(6) |
- Correlation coefficient is defined as
(7) |
The bias is given by
(8) |