Statistics: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:


*Root-Mean-Squared Error is defined as  
*Root-Mean-Squared Error is defined as  
{{Equation|<math> RMSE(x,y) = \sqrt{ \bigg\langle \big(  x - y  \big)^2  \bigg\rangle  } </math>|2=2}}
{{Equation|<math> RMSE(x,y,x_0) = \sqrt{ \bigg\langle \big(  x - y  \big)^2  \bigg\rangle  } </math>|2=2}}


*Relative-Root-Mean-Squared Error  
*Relative-Root-Mean-Squared Error  
{{Equation|<math>  RRMSE(x,y,x_0) = RMSE(x,y)/RMSE(x,x0) </math>|2=3}}
{{Equation|<math>  RRMSE(x,y,x_0) = \frac{\sqrt{ \bigg\langle \big( x - y \big)^2  \bigg\rangle }} { \sqrt{ \bigg\langle \big( x - x_0  \big)^2  \bigg\rangle }} </math>|2=3}}


*Relative-Root-Mean-Squared Error Score  
*Relative-Root-Mean-Squared Error Score  
{{Equation|<math> RMSES(x,y,x_0 = 1-RRMSE(x,y,x_0)  </math>|2=4}}
{{Equation|<math> RMSES(x,y,x_0) = 1-RRMSE(x,y,x_0)  </math>|2=4}}


*Relative-Mean-Absolute Error  
*Relative-Mean-Absolute Error  

Revision as of 18:09, 6 December 2010

Given the observed values x and calculated values y, there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below.

  • Brier Skill Score
  (1)
  • Root-Mean-Squared Error is defined as
  (2)
  • Relative-Root-Mean-Squared Error
  (3)
  • Relative-Root-Mean-Squared Error Score
  (4)
  • Relative-Mean-Absolute Error
  (5)
  • Relative-Mean-Absolute Error Score
  (6)
  • Correlation coefficient is defined as
  (7)

The bias is given by

  (8)

Documentation Portal