Statistics: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
*Root-Mean-Squared Error  
*Root-Mean-Squared Error  
{{Equation|<math> RMSE(x,y) = \sqrt{ \bigg\langle \big(  x - y  \big)^2  \bigg\rangle  } </math>|2=2}}
{{Equation|<math> RMSE(x,y) = \sqrt{ \bigg\langle \big(  x - y  \big)^2  \bigg\rangle  } </math>|2=2}}
*Relative-Root-Mean-Squared Error
{{Equation|<math>  RRMSE(x,y,x_0) =  \frac{RMSE(x,y)}{RMSE(x,x_0)}  </math>|2=3}}
*Relative-Root-Mean-Squared Error Score
{{Equation|<math> RRMSES(x,y,x_0) = 1-\frac{RMSE(x,y)}{RMSE(x,x_0)} </math>|2=4}}


*Mean-Absolute Error  
*Mean-Absolute Error  
Line 18: Line 12:
*Relative-Mean-Absolute Error  
*Relative-Mean-Absolute Error  
{{Equation|<math>  RMAE(x,y) = \frac{MAE(x,y)}{ \big| x \big| }  </math>|2=5}}
{{Equation|<math>  RMAE(x,y) = \frac{MAE(x,y)}{ \big| x \big| }  </math>|2=5}}
*Mean-Absolute Error Score
{{Equation|<math> MAES(x,y,x_0) = \frac{MAE(x,y)}{MAE(x,x_0)} </math>|2=6}}


*Correlation coefficient is defined as  
*Correlation coefficient is defined as  

Revision as of 18:36, 6 December 2010

Given the observed values x and calculated values y, there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below.

  • Brier Skill Score
  (1)
  • Root-Mean-Squared Error
  (2)
  • Mean-Absolute Error
  (5)
  • Relative-Mean-Absolute Error
  (5)
  • Correlation coefficient is defined as
  (7)

The bias is given by

  (8)

Documentation Portal