CMS-Flow:Wave Eqs: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
(Created page with '<big> == Wave-action balance equation with diffraction == Taking into account the effect of an ambient horizontal current or wave behavior, CMS-Wave is based on the steady wave-a…')
 
(Created page with 'big == Wave-action balance equation with diffraction == Taking into account the effect of an ambient horizontal current or wave behavior, CMS-Wave is based on the steady wave-a…')
Line 1: Line 1:
<big>
big
== Wave-action balance equation with diffraction ==
== Wave-action balance equation with diffraction ==
Taking into account the effect of an ambient horizontal current or wave behavior, CMS-Wave is based on the steady wave-action balance equation (Mase 2001)
Taking into account the effect of an ambient horizontal current or wave behavior, CMS-Wave is based on the steady wave-action balance equation (Mase 2001)


         <math> \frac{\partial c_x N  }{\partial x}
         math \frac{\partial c_x N  }{\partial x}
+  \frac{\partial c_y N  }{\partial y}
+  \frac{\partial c_y N  }{\partial y}
+  \frac{\partial c_{\theta} N  }{\partial \theta}  
+  \frac{\partial c_{\theta} N  }{\partial \theta}  
= \frac{\kappa}{2 \sigma}
= \frac{\kappa}{2 \sigma}
\frac{\partial (h U_j )}{\partial x_j} = S </math>
\frac{\partial (h U_j )}{\partial x_j} = S /math


for  <math> j=1,2  </math>
for  math  j=1,2  /math


         <math> \frac{\partial ( h U_i ) }{\partial t} + \frac{\partial (h U_i U_j )}{\partial x_j}
         math \frac{\partial ( h U_i ) }{\partial t} + \frac{\partial (h U_i U_j )}{\partial x_j}
- \epsilon_{ij3} f_c U_j h = - g h \frac{\partial \eta }{\partial x_j}
- \epsilon_{ij3} f_c U_j h = - g h \frac{\partial \eta }{\partial x_j}
  - \frac{h}{\rho_0} \frac{\partial p_a }{\partial x_j}
  - \frac{h}{\rho_0} \frac{\partial p_a }{\partial x_j}
+ \frac{\partial }{\partial x_j} \biggl ( \nu_t  h \frac{\partial U_i }{\partial x_j} \biggr )
+ \frac{\partial }{\partial x_j} \biggl ( \nu_t  h \frac{\partial U_i }{\partial x_j} \biggr )
  + \frac{\tau_i }{\rho}
  + \frac{\tau_i }{\rho}
  </math>  
  /math   


for <math> i=1,2 </math> and <math> j=1,2 </math>
for math i=1,2 /math and math j=1,2 /math


{| border="1"
{| border=1
! Symbol !! Description
! Symbol !! Description
|-
|-
| <math> \sigma </math> || Wave frequency  
| math \sigma /math || Wave frequency  
|-
|-
| <math> N </math> ||  Wave action  
| math N /math ||  Wave action  
|-
|-
| <math> E </math> ||  Spectral wave density
| math E /math ||  Spectral wave density
|-
|-
| <math> c </math> ||  Wave celerity
| math c /math ||  Wave celerity
|-
|-
| <math> c_g </math> || Wave group velocity
| math c_g /math || Wave group velocity
|}
|}


----
----
</big>
/big
[[CMS#Documentation_Portal | Documentation Portal]]
[[CMS#Documentation_Portal | Documentation Portal]]

Revision as of 22:15, 17 May 2010

big

Wave-action balance equation with diffraction

Taking into account the effect of an ambient horizontal current or wave behavior, CMS-Wave is based on the steady wave-action balance equation (Mase 2001)

        math \frac{\partial c_x N  }{\partial x}

+ \frac{\partial c_y N }{\partial y} + \frac{\partial c_{\theta} N }{\partial \theta} = \frac{\kappa}{2 \sigma} \frac{\partial (h U_j )}{\partial x_j} = S /math

for math j=1,2 /math

        math \frac{\partial ( h U_i ) }{\partial t} + \frac{\partial (h U_i U_j )}{\partial x_j}

- \epsilon_{ij3} f_c U_j h = - g h \frac{\partial \eta }{\partial x_j}

- \frac{h}{\rho_0} \frac{\partial p_a }{\partial x_j}

+ \frac{\partial }{\partial x_j} \biggl ( \nu_t h \frac{\partial U_i }{\partial x_j} \biggr )

+ \frac{\tau_i }{\rho}
/math  

for math i=1,2 /math and math j=1,2 /math

Symbol Description
math \sigma /math Wave frequency
math N /math Wave action
math E /math Spectral wave density
math c /math Wave celerity
math c_g /math Wave group velocity

/big Documentation Portal