Help/LaTeX Symbols: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
Line 239: Line 239:
| $\sqrt{abc}\qquad$ \sqrt{abc} || $\sqrt[n]{abc}\qquad$ \sqrt[n]{abc}
| $\sqrt{abc}\qquad$ \sqrt{abc} || $\sqrt[n]{abc}\qquad$ \sqrt[n]{abc}
|-
|-
| $f^3\qquad$ f^3 || $n_c\qquad$ n_c
| $f^3\qquad$ f^3 || $n_\theta\qquad$ n_\theta
|-
|-
| $r_{in}\qquad$ r_{in} || $r_{in}^2\qquad$ r_{in}^2
| $r_{in}\qquad$ r_{in} || $r_{in}^2\qquad$ r_{in}^2

Revision as of 14:54, 3 October 2011

Math mode accents.

$\hat{a}\qquad$ \hat{a} $\acute{a}\qquad$ \acute{a} $\bar{a}\qquad$ \bar{a} $\dot{a}\qquad$ \dot{a}
$\check{a}\qquad$ \check{a} $\grave{a}\qquad$ \grave{a} $\vec{a}\qquad$ \vec{a} $\ddot{a}\qquad$ \ddot{a}
$\breve{a}\qquad$ \breve{a} $\tilde{a}\qquad$ \tilde{a}

Greek letters.

$\alpha\qquad$ \alpha $\theta\qquad$ \theta $\omicron\qquad$ \omicron $\tau\qquad$ \tau
$\beta\qquad$ \beta $\vartheta\qquad$ \vartheta $\pi\qquad$ \pi $\upsilon\qquad$ \upsilon
$\gamma\qquad$ \gamma $\iota\qquad$ \iota $\varpi\qquad$ \varpi $\phi\qquad$ \phi
$\delta\qquad$ \delta $\kappa\qquad$ \kappa $\rho\qquad$ \rho $\varphi\qquad$ \varphi
$\epsilon\qquad$ \epsilon $\lambda\qquad$ \lambda $\varrho\qquad$ \varrho $\chi\qquad$ \chi
$\varepsilon\qquad$ \varepsilon $\mu\qquad$ \mu $\sigma\qquad$ \sigma $\psi\qquad$ \psi
$\zeta\qquad$ \zeta $\nu\qquad$ \nu $\varsigma\qquad$ \varsigma $\omega\qquad$ \omega
$\eta\qquad$ \eta $\xi\qquad$ \xi

Uppercase Greek Letters.

$\Alpha\qquad$ \Alpha $\Iota\qquad$ \Iota $\Sigma\qquad$ \Sigma
$\Beta\qquad$ \Beta $\Kappa\qquad$ \Kappa $\Tau\qquad$ \Tau
$\Gamma\qquad$ \Gamma $\Lambda\qquad$ \Lambda $\Upsilon\qquad$ \Upsilon
$\Delta\qquad$ \Delta $\Mu\qquad$ \Mu $\Phi\qquad$ \Phi
$\Epsilon\qquad$ \Epsilon $\Nu\qquad$ \Nu $\Chi\qquad$ \Chi
$\Zeta\qquad$ \Zeta $\Xi\qquad$ \Xi $\Psi\qquad$ \Psi
$\Eta\qquad$ \Eta $\Pi\qquad$ \Pi $\Omega\qquad$ \Omega
$\Theta\qquad$ \Theta $\Rho\qquad$ \Rho


Binary operation symbols.

$\pm\qquad$ \pm $\cap\qquad$ \cap $\diamond\qquad$ \diamond
$\mp\qquad$ \mp $\cup\qquad$ \cup $\bigtriangleup\qquad$ \bigtriangleup
$\times\qquad$ \times $\uplus\qquad$ \uplus $\bigtriangledown\qquad$ \bigtriangledown
$\div\qquad$ \div $\sqcap\qquad$ \sqcap $\triangleleft\qquad$ \triangleleft
$\ast\qquad$ \ast $\sqcup\qquad$ \sqcup $\triangleright\qquad$ \triangleright
$\star\qquad$ \star $\vee\qquad$ \vee $\lhd\qquad$ \lhd
$\circ\qquad$ \circ $\wedge\qquad$ \wedge $\rhd\qquad$ \rhd
$\bullet\qquad$ \bullet $\setminus\qquad$ \setminus $\unlhd\qquad$ \unlhd
$\cdot\qquad$ \cdot $\wr\qquad$ \wr $\unrhd\qquad$ \unrhd
$\oplus\qquad$ \oplus $\ominus\qquad$ \ominus $\otimes\qquad$ \otimes
$\oslash\qquad$ \oslash $\odot\qquad$ \odot $\bigcirc\qquad$ \bigcirc
$\dagger\qquad$ \dagger $\ddagger\qquad$ \ddagger $\amalg\qquad$ \amalg
$+\qquad$ + $-\qquad$ -

Relation Symbols.

$\leq\qquad$ \leq $\geq\qquad$ \geq $\equiv\qquad$ \equiv
$\prec\qquad$ \prec $\succ\qquad$ \succ $\sim\qquad$ \sim
$\preceq\qquad$ \preceq $\succeq\qquad$ \succeq $\simeq\qquad$ \simeq
$\ll\qquad$ \ll $\gg\qquad$ \gg $\asymp\qquad$ \asymp
$\subset\qquad$ \subset $\supset\qquad$ \supset $\approx\qquad$ \approx
$\subseteq\qquad$ \subseteq $\supseteq\qquad$ \supseteq $\cong\qquad$ \cong
$\sqsubset\qquad$ \sqsubset $\sqsupset\qquad$ \sqsupset $\neq\qquad$ \neq
$\sqsubseteq\qquad$ \sqsubseteq $\sqsupseteq\qquad$ \sqsupseteq $\doteq\qquad$ \doteq
$\in\qquad$ \in $\ni\qquad$ \ni $\notin\qquad$ \notin
$\vdash\qquad$ \vdash $\dashv\qquad$ \dashv $\lt\qquad$ \lt
$\models\qquad$ \models $\perp\qquad$ \perp $\mid\qquad$ \mid
$\parallel\qquad$ \parallel $\bowtie\qquad$ \bowtie $\Join\qquad$ \Join
$\smile\qquad$ \smile $\frown\qquad$ \frown $\propto\qquad$ \propto
$=\qquad$ = $\gt\qquad$ \gt $:\qquad$ :

Arrow Symbols.

$\leftarrow\qquad$ \leftarrow $\rightarrow\qquad$ \rightarrow
$\Leftarrow\qquad$ \Leftarrow $\Rightarrow\qquad$ \Rightarrow
$\longleftarrow\qquad$ \longleftarrow $\longrightarrow\qquad$ \longrightarrow
$\Longleftarrow\qquad$ \Longleftarrow $\Longrightarrow\qquad$ \Longrightarrow
$\leftrightarrow\qquad$ \leftrightarrow $\Leftrightarrow\qquad$ \Leftrightarrow
$\longleftrightarrow\qquad$ \longleftrightarrow $\Longleftrightarrow\qquad$ \Longleftrightarrow
$\mapsto\qquad$ \mapsto $\longmapsto\qquad$ \longmapsto
$\hookleftarrow\qquad$ \hookleftarrow $\hookrightarrow\qquad$ \hookrightarrow
$\leftharpoonup\qquad$ \leftharpoonup $\rightharpoonup\qquad$ \rightharpoonup
$\leftharpoondown\qquad$ \leftharpoondown $\rightharpoondown\qquad$ \rightharpoondown
$\rightleftharpoons\qquad$ \rightleftharpoons $\leadsto\qquad$ \leadsto
$\uparrow\qquad$ \uparrow $\downarrow\qquad$ \downarrow
$\Uparrow\qquad$ \Uparrow $\Downarrow\qquad$ \Downarrow
$\updownarrow\qquad$ \updownarrow $\Updownarrow\qquad$ \Updownarrow
$\nwarrow\qquad$ \nwarrow $\nearrow\qquad$ \nearrow
$\swarrow\qquad$ \swarrow $\searrow\qquad$ \searrow


Miscellaneous Symbols.

$\dagger\qquad$ \dagger $\ddagger\qquad$ \ddagger
$\S\qquad$ \S $\P\qquad$ \P $\LaTeX\qquad$ \LaTeX
$\ldots\qquad$ \ldots $\cdots\qquad$ \cdots $\vdots\qquad$ \vdots
$\ddots\qquad$ \ddots
$\aleph\qquad$ \aleph $\prime\qquad$ \prime $\forall\qquad$ \forall
$\hbar\qquad$ \hbar $\emptyset\qquad$ \emptyset $\exists\qquad$ \exists
$\imath\qquad$ \imath $\nabla\qquad$ \nable $\neg\qquad$ \neg
$\jmath\qquad$ \jmath $\surd\qquad$ \surd $\flat\qquad$ \flat
$\ell\qquad$ \ell $\top\qquad$ \top $\natural\qquad$ \natural
$\wp\qquad$ \wp $\bot\qquad$ \bot $\sharp\qquad$ \sharp
$\Re\qquad$ \Re $\backslash\qquad$ \backslash $\angle\qquad$ \angle
$\Im\qquad$ \Im $\partial\qquad$ \partial $\mho\qquad$ \mho
$.\qquad$ . $\infty\qquad$ \infty $\Box\qquad$ \Box
$\Diamond\qquad$ \Diamond $\triangle\qquad$ \triangle $\clubsuit\qquad$ \clubsuit
$\diamondsuit\qquad$ \diamondsuit $\heartsuit\qquad$ \heartsuit $\spadesuit\qquad$ \spadesuit

Variable-sized Symbols.

$\sum\qquad$ \sum $\bigcap\qquad$ \bigcap $\bigodot\qquad$ \bigodot
$\prod\qquad$ \prod $\bigcup\qquad$ \bigcup $\bigotimes\qquad$ \bigotimes
$\coprod\qquad$ \coprod $\bigsqcup\qquad$ \bigsqcup $\bigoplus\qquad$ \bigoplus
$\int\qquad$ \int $\bigvee\qquad$ \bigvee $\biguplus\qquad$ \biguplus
$\oint\qquad$ \oint $\bigwedge\qquad$ \bigwedge

Delimiters.

$(\qquad$ ( $)\qquad$ )
$[\qquad$ [ $]\qquad$ ]
$\uparrow\qquad$ \uparrow $\downarrow\qquad$ \downarrow
$\Uparrow\qquad$ \Uparrow $\Downarrow\qquad$ \Downarrow
$\updownarrow\qquad$ \updownarrow $\Updownarrow\qquad$ \Updownarrow
$\lfloor\qquad$ \lfloor $\rfloor\qquad$ \rfloor
$\lceil\qquad$ \lceil $\rceil\qquad$ \rceil
$\langle\qquad$ \langle $\rangle\qquad$ \rangle
$/\qquad$ / $\backslash\qquad$ \backslash
\qquad$ | \qquad$ \|

Some Other Constructions.

$\widetilde{abc}\qquad$ \widetilde{abc} $\widehat{abc}\qquad$ \widehat{abc}
$\overleftarrow{abc}\qquad$ \overleftarrow{abc} $\overrightarrow{abc}\qquad$ \overrightarrow{abc}
$\overline{abc}\qquad$ \overline{abc} $\underline{abc}\qquad$ \underline{abc}
$\overbrace{abc}\qquad$ \overbrace{abc} $\underbrace{abc}\qquad$ \underbrace{abc}
$\sqrt{abc}\qquad$ \sqrt{abc} $\sqrt[n]{abc}\qquad$ \sqrt[n]{abc}
$f^3\qquad$ f^3 $n_\theta\qquad$ n_\theta
$r_{in}\qquad$ r_{in} $r_{in}^2\qquad$ r_{in}^2
$f'\qquad$ f' $\frac{abc}{xyz}\qquad$ \frac{abc}{xyz}