Statistics: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
(Created page with " The Root-Mean-Squared Error is defined as {{Equation|<math> \sqrt{ \bigg\langle \big( x - y \big)^2 \bigg\rangle } </math>|2=1}} The Relative-Mean-Absolute Error is define...")
 
No edit summary
Line 1: Line 1:
The Root-Mean-Squared Error is defined as  
The Root-Mean-Squared Error is defined as  
{{Equation|<math> \sqrt{ \bigg\langle \big(  x - y  \big)^2  \bigg\rangle  } </math>|2=1}}
{{Equation|<math> RMSE = \sqrt{ \bigg\langle \big(  x - y  \big)^2  \bigg\rangle  } </math>|2=1}}


The Relative-Mean-Absolute Error is defined as  
The Relative-Mean-Absolute Error is defined as  
{{Equation|<math>  \frac { \bigg\langle \big|  x - y  \big|  \bigg\rangle }{ \big| x \big| }  </math>|2=2}}
{{Equation|<math> RMAE = \frac { \bigg\langle \big|  x - y  \big|  \bigg\rangle }{ \big| x \big| }  </math>|2=2}}


The Relative-Mean-Absolute Error is defined as  
The Relative-Mean-Absolute Error is defined as  
{{Equation|<math>  \frac { \langle xy \rangle - \langle x \rangle \langle y \rangle  }{ \sqrt{ \langle x^2 \rangle - \langle x \rangle ^2 \sqrt{ \langle y^2 \rangle - \langle y \rangle ^2}  </math>|2=3}}
{{Equation|<math>  R = \frac { \langle xy \rangle - \langle x \rangle \langle y \rangle  }{ \sqrt{ \langle x^2 \rangle - \langle x \rangle ^2} \sqrt{ \langle y^2 \rangle - \langle y \rangle ^2} }  </math>|2=3}}

Revision as of 18:32, 13 October 2010

The Root-Mean-Squared Error is defined as

  (1)

The Relative-Mean-Absolute Error is defined as

  (2)

The Relative-Mean-Absolute Error is defined as

  (3)