|
|
Line 4: |
Line 4: |
| {{Equation|<math> BSS(x,y) = 1 - \frac{\bigg\langle \big(x-y\big)^2 \bigg\rangle}{\bigg\langle \big(x-x_0\big)^2 \bigg\rangle } </math>|2=1}} | | {{Equation|<math> BSS(x,y) = 1 - \frac{\bigg\langle \big(x-y\big)^2 \bigg\rangle}{\bigg\langle \big(x-x_0\big)^2 \bigg\rangle } </math>|2=1}} |
|
| |
|
| *Root-Mean-Squared Error is defined as | | *Root-Mean-Squared Error |
| {{Equation|<math> RMSE(x,y,x_0) = \sqrt{ \bigg\langle \big( x - y \big)^2 \bigg\rangle } </math>|2=2}} | | {{Equation|<math> RMSE(x,y) = \sqrt{ \bigg\langle \big( x - y \big)^2 \bigg\rangle } </math>|2=2}} |
|
| |
|
| *Relative-Root-Mean-Squared Error | | *Relative-Root-Mean-Squared Error |
| {{Equation|<math> RRMSE(x,y,x_0) = \frac{\sqrt{ \bigg\langle \big( x - y \big)^2 \bigg\rangle }} { \sqrt{ \bigg\langle \big( x - x_0 \big)^2 \bigg\rangle }} </math>|2=3}} | | {{Equation|<math> RRMSE(x,y,x_0) = \frac{RMSE(x,y)}{RMSE(x,x_0)} </math>|2=3}} |
| | |
| | {{Equation|<math> RRMSE(x,y,x_0) = \frac{ x - y \big)^2 \bigg\rangle }} { \sqrt{ \bigg\langle \big( x - x_0 \big)^2 \bigg\rangle }} </math>|2=3}} |
|
| |
|
| *Relative-Root-Mean-Squared Error Score | | *Relative-Root-Mean-Squared Error Score |
Revision as of 18:13, 6 December 2010
Given the observed values x and calculated values y, there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below.
|
|
(1)
|
|
|
(2)
|
- Relative-Root-Mean-Squared Error
|
|
(3)
|
|
Failed to parse (syntax error): {\displaystyle RRMSE(x,y,x_0) = \frac{ x - y \big)^2 \bigg\rangle }} { \sqrt{ \bigg\langle \big( x - x_0 \big)^2 \bigg\rangle }} }
|
(3)
|
- Relative-Root-Mean-Squared Error Score
|
|
(4)
|
- Relative-Mean-Absolute Error
|
|
(5)
|
- Relative-Mean-Absolute Error Score
|
|
(6)
|
- Correlation coefficient is defined as
|
|
(7)
|
The bias is given by
|
|
(8)
|
Documentation Portal