Statistics: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
*Normalized-Root-Mean-Squared Error | *Normalized-Root-Mean-Squared Error | ||
{{Equation|<math> NRMSE = \frac{\sqrt{ \bigg\langle \big( x_m - x_c \big)^2 \bigg\rangle}}{\text{Range}(x_m)} </math>|2= | {{Equation|<math> NRMSE = \frac{\sqrt{ \bigg\langle \big( x_m - x_c \big)^2 \bigg\rangle}}{\text{Range}(x_m)} </math>|2=3}} | ||
*Mean-Absolute Error | *Mean-Absolute Error | ||
{{Equation|<math> MAE = \bigg\langle \big| x_m - x_c \big| \bigg\rangle </math>|2= | {{Equation|<math> MAE = \bigg\langle \big| x_m - x_c \big| \bigg\rangle </math>|2=4}} | ||
*Normalized-Mean-Absolute Error | *Normalized-Mean-Absolute Error | ||
{{Equation|<math> NMAE = \frac{MAE}{ \big| \text{Range}) \big| } </math>|2=5}} | {{Equation|<math> NMAE = \frac{MAE}{ \big| \text{Range}(x_m) \big| } </math>|2=5}} | ||
*Correlation coefficient is defined as | *Correlation coefficient is defined as | ||
{{Equation|<math> R = \frac { \langle x_m x_c \rangle - \langle x_m \rangle \langle x_c \rangle }{ \sqrt{ \langle x_m^2 \rangle - \langle x_m \rangle ^2} \sqrt{ \langle x_c^2 \rangle - \langle x_c \rangle ^2} } </math>|2= | {{Equation|<math> R = \frac { \langle x_m x_c \rangle - \langle x_m \rangle \langle x_c \rangle }{ \sqrt{ \langle x_m^2 \rangle - \langle x_m \rangle ^2} \sqrt{ \langle x_c^2 \rangle - \langle x_c \rangle ^2} } </math>|2=6}} | ||
*Bias | |||
{{Equation|<math> B = \langle x_m \rangle - \langle x_c \rangle </math>|2=8}} | {{Equation|<math> B = \langle x_m \rangle - \langle x_c \rangle </math>|2=7}} | ||
* Nash-Sutcliffe Coefficient | |||
{{Equation|<math> BSS = 1 - \frac{\bigg\langle \big(x_m-x_c\big)^2 \bigg\rangle}{\bigg\langle \big(x_m- \langle x_m \rangle \big)^2 \bigg\rangle } </math>|2=8}} | |||
---- | ---- | ||
[[CMS#Documentation_Portal | Documentation Portal]] | [[CMS#Documentation_Portal | Documentation Portal]] |
Revision as of 18:07, 1 June 2011
Given the initial measured values , final observed or measured values and final calculated values , there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below.
- Brier Skill Score
(1) |
- Root-Mean-Squared Error
(2) |
- Normalized-Root-Mean-Squared Error
(3) |
- Mean-Absolute Error
(4) |
- Normalized-Mean-Absolute Error
(5) |
- Correlation coefficient is defined as
(6) |
- Bias
(7) |
- Nash-Sutcliffe Coefficient
(8) |