CMS-Flow Hydrodnamics: Variable Definitions: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
:<math>\bar{u_i}</math> = current (wave-averaged) velocity [m/s]
:<math>\bar{u_i}</math> = current (wave-averaged) velocity [m/s]


:<math>\tilde{u_i}</math> =  wave (oscillatory) velocity with wave-average <math>\bar{\tilde{u_i}} = 0 [m/s]</math>
:<math>\tilde{u_i}</math> =  wave (oscillatory) velocity [m/s]with wave-average <math>\bar{\tilde{u_i}} = 0</math> below the wave trough


:<math>u_i^'</math> = turbulent fluctuation with ensemble average <math>\langle u_i^' \rangle</math> = 0 and wave average <math>\bar{u_i^'}</math> = 0 [m/s]
:<math>u_i^'</math> = turbulent fluctuation with ensemble average <math>\langle u_i^' \rangle</math> = 0 and wave average <math>\bar{u_i^'}</math> = 0 [m/s]
Line 22: Line 22:
where
where


:<math>h</math> = wave-averaged water depth <math>h=\bar{\eta} - z_b </math> [m]
:<math>h</math> = wave-averaged water depth <math>h=\bar{\eta} - z_b </math> (Figure 2-1) [m]


:<math>V_i</math> = total mean mass flux velocity or simply total flux velocity for short [m/s]
:<math>V_i</math> = total mean mass flux velocity or simply total flux velocity for short [m/s]


:<math>u_i</math> = instantaneous current velocity [m/s]
:<math>\eta</math> = instantaneous water level with respect to the Still Water Level (SWL) [m]


:<math>\eta</math> = instantaneous water level with respect to the Still Water Level (SWL) [m]
:<math>\bar{\eta}</math> = wave-averaged water surface elevation with respect to the SWL (Figure 2-1) [m]


:<math>z_b</math>  = bed elevation with respect to the SWL [m]
:<math>z_b</math>  = bed elevation with respect to the SWL (Figure 2-1) [m]




The total flux velocity is also referred to as the mean transport velocity (Phillips 1977) and mass transport velocity (Mei 1983). The current volume flux is defined as  
The total flux velocity is also referred to as the mean transport velocity (Phillips 1977) and mass transport velocity (Mei 1983). The current volume flux is defined as  
{{Equation|
{{Equation|
<math>hU_i = \int^\bar{\eta}_{z} \bar{u_i}dz</math>   (2-3)
<math>hU_i = \int^\bar{\eta}_{z_b} \bar{u_i}dz</math>|3}}
|3}}


where <math>U_i</math> is the depth-averaged current velocity. Similarly, the wave volume flux is defined as by  
where <math>U_i</math> is the depth-averaged current velocity. Similarly, the wave volume flux is defined as by  

Revision as of 17:21, 11 August 2014

The instantaneous current velocity ui is split into:

 

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u_i = \bar{u_i} + \tilde{u_i} + u_i^'}

(1)

in which

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bar{u_i}} = current (wave-averaged) velocity [m/s]
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \tilde{u_i}} = wave (oscillatory) velocity [m/s]with wave-average Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bar{\tilde{u_i}} = 0} below the wave trough
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u_i^'} = turbulent fluctuation with ensemble average Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \langle u_i^' \rangle} = 0 and wave average Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bar{u_i^'}} = 0 [m/s]


The wave-averaged total volume flux is defined as

 

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h V_i = \overline{{\int_z^\eta} {u_i dz }}}

(2)

where

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h} = wave-averaged water depth Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h=\bar{\eta} - z_b } (Figure 2-1) [m]
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V_i} = total mean mass flux velocity or simply total flux velocity for short [m/s]
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \eta} = instantaneous water level with respect to the Still Water Level (SWL) [m]
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bar{\eta}} = wave-averaged water surface elevation with respect to the SWL (Figure 2-1) [m]
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle z_b} = bed elevation with respect to the SWL (Figure 2-1) [m]


The total flux velocity is also referred to as the mean transport velocity (Phillips 1977) and mass transport velocity (Mei 1983). The current volume flux is defined as

 

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle hU_i = \int^\bar{\eta}_{z_b} \bar{u_i}dz}

(3)

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U_i} is the depth-averaged current velocity. Similarly, the wave volume flux is defined as by

 

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle Q_{wi} = hU_{wi} = \overline{\int_{\eta_t}^\eta \tilde{u_i} dz}}

(4)

where

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U_{wi}} = depth-averaged wave flux velocity [m/s]
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \eta_t} = wave trough elevation [m]

Therefore the total flux velocity may be written as

 

Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V_i = U_i + U_{wi}}

(5)

Documentation Portal