CMS-Flow:Subgrid Turbulence Model: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
Deleted (talk | contribs)
Deleted (talk | contribs)
Line 4: Line 4:
In CMS-Flow eddy viscosity is calculated as  
In CMS-Flow eddy viscosity is calculated as  


       <math> \nu_t = (1-\theta_m)\nu_c + \theta_m \nu_w </math>   
       <math> \nu_t = \nu_c + \nu_w </math>   


where <math>\theta_m</math> is weighting factor equal to <math>\theta_m = (H_s/h)^3 </math> in which <math>H_s</math> is the significant wave height and <math>\nu_c</math> and <math>\nu_w</math> are the current- and wave-related eddy viscosity components respectively. The wave contribution is included using the equation of Kraus and Larson (1991)  
where <math>\theta_m</math> is weighting factor equal to <math>\theta_m = (H_s/h)^3 </math> in which <math>H_s</math> is the significant wave height and <math>\nu_c</math> and <math>\nu_w</math> are the current- and wave-related eddy viscosity components respectively. The wave contribution is included using the equation of Kraus and Larson (1991)  

Revision as of 13:33, 4 May 2010

Subgrid Turbulence Model

In CMS-Flow eddy viscosity is calculated as

     νt=νc+νw  

where θm is weighting factor equal to θm=(Hs/h)3 in which Hs is the significant wave height and νc and νw are the current- and wave-related eddy viscosity components respectively. The wave contribution is included using the equation of Kraus and Larson (1991)

     νw=Λuwh

where Λ is an empirical coefficient (default is 0.5), and uw is the wave bottom orbital velocity and h is the water depth. The current-related eddy viscosity is calculated as a function of the flow gradients, and the bottom shear stress

     νc=ν0+(c0u*h)2+(csmΔ|S|)2

where ν0 is a base value approximately equal to the kinematic viscosity, c0 is an empirical coefficient, csm is an empirical coefficient (Smagorinsky coefficient), Δ is the local cell area, and |S| is equal to

     |S|=(Ux)2+(Vy)2+12(Uy+Vx)2



References

LARSON, M.; HANSON, H., and KRAUS, N. C., 2003. Numerical modeling of beach topography change. Advances in Coastal Modeling, V.C. Lakhan (eds.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365.


CMS-Flow