Statistics: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
{{Equation|<math> BSS(x,y) = 1 - \frac{\bigg\langle \big(x-y\big)^2 \bigg\rangle}{\bigg\langle \big(x-x_0\big)^2 \bigg\rangle } </math>|2=1}} | {{Equation|<math> BSS(x,y) = 1 - \frac{\bigg\langle \big(x-y\big)^2 \bigg\rangle}{\bigg\langle \big(x-x_0\big)^2 \bigg\rangle } </math>|2=1}} | ||
*Root-Mean-Squared Error | *Root-Mean-Squared Error | ||
{{Equation|<math> RMSE(x,y | {{Equation|<math> RMSE(x,y) = \sqrt{ \bigg\langle \big( x - y \big)^2 \bigg\rangle } </math>|2=2}} | ||
*Relative-Root-Mean-Squared Error | *Relative-Root-Mean-Squared Error | ||
{{Equation|<math> RRMSE(x,y,x_0) = \frac{ | {{Equation|<math> RRMSE(x,y,x_0) = \frac{RMSE(x,y)}{RMSE(x,x_0)} </math>|2=3}} | ||
{{Equation|<math> RRMSE(x,y,x_0) = \frac{ x - y \big)^2 \bigg\rangle }} { \sqrt{ \bigg\langle \big( x - x_0 \big)^2 \bigg\rangle }} </math>|2=3}} | |||
*Relative-Root-Mean-Squared Error Score | *Relative-Root-Mean-Squared Error Score |
Revision as of 18:13, 6 December 2010
Given the observed values x and calculated values y, there are several goodness of fit statistics or skill scores which can be calculated. The definition for some of the more common ones are provided below.
- Brier Skill Score
(1) |
- Root-Mean-Squared Error
(2) |
- Relative-Root-Mean-Squared Error
(3) |
Failed to parse (syntax error): {\displaystyle RRMSE(x,y,x_0) = \frac{ x - y \big)^2 \bigg\rangle }} { \sqrt{ \bigg\langle \big( x - x_0 \big)^2 \bigg\rangle }} } | (3) |
- Relative-Root-Mean-Squared Error Score
(4) |
- Relative-Mean-Absolute Error
(5) |
- Relative-Mean-Absolute Error Score
(6) |
- Correlation coefficient is defined as
(7) |
The bias is given by
(8) |