CMS-Flow:Hydro Eqs: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
No edit summary
Line 3: Line 3:
The depth-averaged 2-D continuity and momentum equations are given by
The depth-averaged 2-D continuity and momentum equations are given by


{{Equation|<math> \frac{\partial h }{\partial t} + \frac{\partial (h U_j )}{\partial x_j} = S </math>|2=1}}
{{Equation|<math> \frac{\partial h}{\partial t}+\nabla \cdot (h\mathbf{U})=S </math>|2=1}}


for  <math>  j=1,2  </math>
for  <math>  j=1,2  </math>


{{Equation| <math> \frac{\partial ( h U_i ) }{\partial t} + \frac{\partial (h U_i U_j )}{\partial x_j}
{{Equation| <math> \frac{\partial (h{{U}_{i}})}{\partial t}+\nabla \cdot (h\mathbf{U}{{U}_{i}})-\mathbf{BU}=-gh{{\nabla }_{i}}\eta +\nabla \cdot \left( {{\nu }_{t}}h\nabla {{U}_{i}} \right)+\frac{1}{\rho }\left( {{\tau }_{wi}}+{{\tau }_{Si}}-{{\tau }_{bi}} \right) </math>|2=2}}   
- \epsilon_{ij3} f_c U_j h = - g h \frac{\partial \eta }{\partial x_i}
- \frac{h}{\rho_0} \frac{\partial p_a }{\partial x_i}
+ \frac{\partial }{\partial x_j} \biggl ( \nu_t  h \frac{\partial U_i }{\partial x_j} \biggr )
+ \frac{\tau_i }{\rho}
</math>|2=2}}   


for <math> i=1,2 </math> and <math> j=1,2 </math>
for <math> i=1,2 </math> and <math> j=1,2 </math>

Revision as of 21:21, 31 March 2011

Governing Equation

The depth-averaged 2-D continuity and momentum equations are given by

  (1)

for

  (2)

for and

Symbol Description Units
Time sec
Total water depth m
Still water depth m
Water surface elevation with respect to the still water elevation m
Current velocity in the jth direction m/sec
Sum of Precipitation and evaporation per unit area m/sec
Gravitational constant m/sec2
Water density kg/m3
Atmospheric pressure Pa
Turbulent eddy viscosity m2/sec

Documentation Portal