CMS-Wave:Wave-current Interaction: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
m (1 revision: Import from Fault)
Line 5: Line 5:
The characteristic velocities  <math>c_x</math>,  <math>c_y</math>, and <math>c_{\theta}</math> are calculated as
The characteristic velocities  <math>c_x</math>,  <math>c_y</math>, and <math>c_{\theta}</math> are calculated as


    <math>c_x = c_g \cos \theta + U</math>
\begin{equation} c_x = c_g \cos \theta + U \end{equation}
    <math>c_y = c_g \sin \theta + V</math>
\begin{equation} c_y = c_g \sin \theta + V \end{equation}   
    <math>c_{\theta} = \frac{\sigma}{\sinh 2 k h}
\begin{equation} c_{\theta} = \frac{\sigma}{\sinh 2 k h}
\biggl( \sin \theta \frac{\partial h}{\partial x}  - \cos \theta \frac{\partial h}{\partial y } \biggr)
\biggl( \sin \theta \frac{\partial h}{\partial x}  - \cos \theta \frac{\partial h}{\partial y } \biggr)
+ \cos \theta \sin \theta \frac{\partial U}{\partial x}
+ \cos \theta \sin \theta \frac{\partial U}{\partial x}
Line 13: Line 13:
+ \sin ^2 \theta \frac{\partial V}{\partial x}  
+ \sin ^2 \theta \frac{\partial V}{\partial x}  
- \cos \theta \sin \theta \frac{\partial V}{\partial y}  
- \cos \theta \sin \theta \frac{\partial V}{\partial y}  
</math>
\end{equation}     


The dispersion relationships between the relative angular frequency σ, the absolute angular frequency ω, the wave number vector k, and the current velocity vector U = U2 +V2 are (Jonsson 1990)
The dispersion relationships between the relative angular frequency σ, the absolute angular frequency ω, the wave number vector k, and the current velocity vector U = U2 +V2 are (Jonsson 1990)

Revision as of 14:52, 14 September 2011

Under Construction

Wave-current Interaction

The characteristic velocities , , and are calculated as

\begin{equation} c_x = c_g \cos \theta + U \end{equation} \begin{equation} c_y = c_g \sin \theta + V \end{equation} \begin{equation} c_{\theta} = \frac{\sigma}{\sinh 2 k h} \biggl( \sin \theta \frac{\partial h}{\partial x} - \cos \theta \frac{\partial h}{\partial y } \biggr) + \cos \theta \sin \theta \frac{\partial U}{\partial x} - \cos ^2 \theta \frac{\partial U}{\partial y} + \sin ^2 \theta \frac{\partial V}{\partial x} - \cos \theta \sin \theta \frac{\partial V}{\partial y} \end{equation}

The dispersion relationships between the relative angular frequency σ, the absolute angular frequency ω, the wave number vector k, and the current velocity vector U = U2 +V2 are (Jonsson 1990)


Symbol Description
Wave celerity
Wave group velocity
Wave frequency
Spectral wave density
Wave number
Total water depth
Depth-averaged current velocity in x-direction
Depth-averaged current velocity in y-direction

Documentation Portal