User Guide 021

From CIRPwiki
Revision as of 19:50, 2 May 2015 by Rdchldlj (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

10 References

Andrews, D.G., and McIntyre, M.E. 1978a. An exact theory of nonlinear waves on a Lagrangian mean flow. Journal of Fluid Mechanics. 89, 609-646.

Aquaveo. 2010. SMS: XY Series Files (*.xys). http://www.xmswiki.com/xms/SMS:XY_Series_Files_(*.xys).

Armanini, A., and di Silvio, G. 1986. “Discussion on the paper ‘A depth-averaged model for suspended sediment transport’, ” by Galappattti, G., and Vreugdenhil, C.B. Journal of Hydraulic Re-search. 24(5), 437-441.

Batten, B.K., and N.C. Kraus. 2006. “Evaluation of Downdrift Shore Ero-sion, Mattituck Inlet, New York: Section 111 Study,” Technical Re-port ERDC/CHL-TR-06-1, US Army Engineer Research and Devel-opment Center, Coastal and Hydraulics Laboratory, Vicksburg, Mississippi

Beck, T.B., and N.C. Kraus. 2010. Shark River Inlet, New Jersey, Entrance Shoaling: Report 2, Analysis with Coastal Modeling System. Tech-nical Report ERDC/CHL-TR-10-4, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.

Benson, M.A., and Dalrymple, T. 1967. General field and office procedures for indirect discharge measurements: U.S. Geological Survey Techniques of Water-Resources Investigations book 3, Chap. Al, 30 p.

Butler, C.D., Richards, D.R., Wallace, R.M., Jones, N.L., and Jones, R. 2007. “eXtensible Model Data Format (XMDF),” Coastal and Hy-draulics Laboratory Special Report ERDC SR-07-1, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Buttolph, A.M., Reed, C.W., Kraus, N.C., Ono, N., Larson, M., Camenen, B., Hanson, H.,Wamsley, T., and Zundel, A. K. 2006. Two-dimensional depth-averaged circulation model CMS-M2D: Version 3.0, Report 2: Sediment transport and morphology change. Tech. Rep. ERDC/CHL TR-06-9, U.S. Army Engineer Research and Development Center, Coastal and Hydraulic Engineering, Vicksburg, MS.

Bye, J.A.T. 1985. Large-Scale Momentum Exchange in the Coupled At-mosphere–Ocean, Coupled Ocean–Atmosphere Models,” Elsevier Science Publishers, Amsterdam, pp. 51–61.

Byrnes, M.R., Griffee, S.F., and Osler. M.S. 2010. Channel Dredging and Geomorphic Response at and Adjacent to Mobile Pass, Alabama. Technical Report ERDC/CHL-TR-10-8, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laborato-ry, Vicksburg, MS. http://cirp.usace.army.mil/pubs/html/10-Byrnes_TR-10-8.html, accessed June 2011

Camenen, B., and Larson, M. 2005. A general formula for non-cohesive bed load sediment transport. Estuarine, Coastal and Shelf Science, 63, 249–260.

Camenen, B., and Larson, M. 2007. A unified sediment transport formula-tion for coastal inlet application. Technical report ERDC/CHL CR-07-1, US Army Engineer Research and Development Center, Vicksburg, MS.

Camenen, B., and Larson, M. 2008. A general formula for noncohesive suspended sediment transport. Journal of Coastal Research, 24 (3), 615–627.

Cebeci, T., and Bradshaw, P. 1977. Momentum transfer in boundary layers. Hemisphere, Washington D.C.

CEM (2002). Coastal Engineering Manual. Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (in 6 volumes).

Choi, S.K., Nam, H.Y., and Cho, M. 1995. A comparison of higher-order bounded convection schemes. Computational Methods in Applied Mechanics and Engineering, 121, 281-301. Chawla A., and J. T. Kirby. 2002. Monochromatic and random wave breaking at blocking points. Journal of Geophysical Research 107(C7), 10.1029/2001JC001042.

Coriolis, G.G. 1835. Sur les équations du mouvement relatif des systèmes de corps. J. de l'Ecole royale polytechnique, 15, 144–154.

Dawe, J.T., and Thompson, L. 2006. Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophysical Research Letters. 33, L09604.

Davies, A.G., Soulsby, R.L., and King, H.L. 1988. A numerical model of the combined wave and current bottom boundary layer, Journal of Ge-ophysical Research, 93(C1), 491-508.

Demirbilek, Z. and Rosati, J.D. 2011. Verification and Validation of the Coastal Modeling System: Report I, Executive Summary. Tech. Re-port ERDC/CHL-TR-11-10, U.S. Army Engineer Research and De-velopment Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.

Falconer, R.A. 1980. Modeling of planform influence on circulation in harbors. Proceedings Coastal Engineering Conference ’17. ASCE, 2,726-2, 744.

Ferziger, J. H., and Peric, M. (1997). Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin/New York, 226 p.

Folk R.L, and Ward, W.C. 1957. Brazos River bar: a study in the signifi-cance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.

Fredsoe, J. 1984. Turbulent boundary layer in wave-current motion. Journal of Hydraulic Engineering, ASCE, 110, 1103-1120.

Gallappatti, G., and Vreugdenhil, C.B. 1985. A depth-integrated model for suspended sediment transport. Journal of Hydraulic Research, 23(4), 359-377.

Gauckler, P. 1867. Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux. Comptes Rendues de l'Académie des Sciences, Paris, France, 64, 818–822.

Graf, W.H., and Altinakar, M. 1998. Fluvial Hydraulics. Wiley & Sons Ltd., 681 pp. Grant, W.D., and Madsen, O.S. 1979. Combined wave and current interac-tion with a rough bottom, Journal of Geophysical Research, 86(C4), 1797-1808.

Harlow, F.H. and Welch, J.E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids. 8, 2182.

Hirano, M. 1971. River bed degradation with armouring, Trans. of Jap. Soc. Civ. Eng., 3(2), 194-195.

Hsu, S.A. 1988. Coastal meteorology. Academic Press, San Diego, CA.

Huynh-Thanh, S., and Temperville, A. 1991. A numerical model of the rough turbulent boundary layer in combined wave and current in-teraction,” in Sand Transport in Rivers, Estuaries and the Sea, eds. R.L. Soulsby and R. Bettess, pp.93-100. Balkema, Rotterdam.

Jasak H., Weller, H.G., And Gosman, A.D. 1999. High Resolution Nvd Differencing Scheme For Arbitrarily Unstructured Meshes. Interna-tional Journal of Numerical Methods for Fluids, 31, 431–449.

Johnson, I.G., 1966. Wave Boundary Layer and Function Factors. Proceedings 10th Coastal Engineering Conference. ASCE, pp. 127-148.

Jonsson, I.G. 1990. Wave-current interactions. Chapter 7, The Sea. B. Le Mehaute and D. Hanes (ed.). New York, NY: John Wiley and Sons, 65-120.

Karim M.F., and Kennedy J.F. 1982. IALLUVIAL: A Computer-Based Flow- and Sediment-Routing for Alluvial Stream and Its Applica-tion to the Missouri River. Iowa Institute of Hydraulic Research Report No. 250, University of Iowa; Iowa City, Iowa.

Kraus, N.C., Lin, L., Batten, B.K., and Brown, G.L. 2006. Matagorda Ship Channel, Texas. jetty stability study. Coastal and Hydraulics La-boratory Technical Report ERDC/CHL TR-06-7. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Lai, Y.G. 2010. Two-dimensional depth-averaged flow modeling with an un-structured hybrid mesh. Journal of Hydraulic Engineering, 136, 12-23.

Lamb, H., 1932. Hydrodynamics. 6th ed. New York: Dover Publications.

Larson, M., and Kraus, N.C. 2002. NMLONG: Numerical model for simu-lating longshore current. Coastal and Hydraulics Laboratory Tech-nical Report ERDC/CHL TR-02-22. Vicksburg, MS: U.S. Army En-gineer Research and Development Center.

Le Provost, C., Genco, M.L., Lyard, F., Vincent, P., and Canceil, P. 1994. Spectroscopy of the ocean tides from a finite element hydrodynamic model. Journal of Geophysical Research, 99(C12), 24777–24797.

Li, H., Brown, M.E., Smith, T.D., and Podoski, J.H. 2009. Evaluation of pro-posed channel on circulation and morphology change at Kawaihae Harbor and Pelekane Bay, Island of Hawaii, HI. Tech. Report ERDC/CHL TR-09-19. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Li, H., Reed, C.W., and Brown, M.E. 2012. Salinity calculations in the Coastal Modeling System. Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-IV-80. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Lin, B.N. 1984. Current study of unsteady transport of sediment in China. Proceedings Japan-China Bilateral Seminar on River Hydraulics and Engineering Experience, July, Tokyo-Kyoto-Saporo, Japan, 337-342.

Lin, L., Demirbilek, Z., Mase, H., Zheng, J., and Yamada, F. 2008. CMS-Wave: a nearshore spectral wave processes model for coastal inlets and navigation projects. Tech. Report ERDC/CHL TR-08-13. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Lin, L., Demirbilek, Z., and Mase, H. 2011a. Recent capabilities of CMS-Wave: A coastal wave model for inlets and navigation projects. Journal of Coastal Research, Special Issue 59, 7-14.

Lin, L., Demirbilek, Z., Thomas, R., and Rosati III, J. 2011b. Verification and Validation of the Coastal Modeling System, Report 2: CMS-Wave, Technical Report ERDC/CHL-TR-11-10, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, Mississippi.

Lin, L., Watts, I., and Demirbilek, Z. 2012. CMS-Wave Model: Part 3. Grid Nesting and Application Example for Rhode Island South Shore Regional Sediment Management Study (In Press)

Longuet-Higgins, M.S., and Stewart, R.W. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, 10(4), 529-549.

Lyard, F., Lefevre, F., Letellier, T., and Francis, O. 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynam-ics, 56, 394–415.

MacDonald, N.J., Davies, M.H., Zundel, A.K., Howlett, J.D., Lackey, T. C., Demirbilek, Z., and Gailani, J.Z. 2006. PTM: Particle Tracking Model; Report 1: Model theory, implementation, and example ap-plications. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL-TR-06-20. Vicksburg, MS: U.S. Army Engineer Re-search and Development Center.

Madsen, O.S., 1994. Spectral wave–current bottom boundary layer flows. Proceedings of the 24th Conference on Coastal Engeering, ASCE, Kobe, Japan, 1, 384–398.

Mase, H., Oki, K., Hedges, T.S., and Li, H.J. 2005. Extended energy-balance-equation wave model for multidirectional random wave transformation. Ocean Engineering, 32(8-9), 961-985. Mei, C. 1983. The Applied Dynamics of Ocean Surface Waves, John Wiley, New York.

Militello, A., Reed, C.W., Zundel, A.K., and Kraus, N.C. 2004. Two-dimensional depth-averaged circulation model CMS-M2D: Version 2.0, Report 1, Technical documentation and user's guide. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-04-02. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Mukai, A.Y., Westerlink, J.J., Luettich, R.A.Jr., and Mark, D. 2002. EastCoast 2001, A tidal constituent database for Western North Atlantic, Gulf of Mexico and Caribbean Sea, Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-02-04. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Myrhaug, D., Holmedal, L.E., Simons, R.R., and MacIver, R.D., 2001. Bottom friction in random waves plus current flow. Coastal Engineering, 43, 75-92.

Nicholson, J., and O’Connor, B.A. 1986. Cohesive sediment transport model. Journal of Hydraulic Engineering, 112(7): 621-640.

Nielsen, P. 1992. Coastal bottom boundary layers and sediment transport. World Scientific, Singapore, 324 pp.

Pacanowski, R.C. 1987. Effect of equatorial currents on surface wind stress. Journal of Physical Oceanography. 17, 833–838.

Parker, G., Kilingeman, P.C., and McLean, D.G. 1982. Bed load and size distribution in paved gravel-bed streams,” Journal of the Hydrau-lics Division, ASCE, 108(4), 544-571.

Patankar, S. V. 1980. Numerical heat transfer and fluid flow, Hemisphere, New York. Phillips, O.M. 1977. The dynamics of the upper ocean. (2nd ed.). Cambridge University Press.

Powell, M.D., Vickery, P.J., and Reinhold, T.A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283.

Reed, C.W., and Lin, L. 2011. "Analysis of Packery Channel Public Access Boat Ramp Shoreline Failure," Journal of Coastal Research Special Edition, Coastal Education and Research Foundation, Inc., Special Issue, 59, 150-155.

Reed, C.W., Brown, M.E., Sánchez, A., Wu, W., and Buttolph, A.M. 2011. "The Coastal Modeling System Flow Model (CMS-Flow): Past and Present,"Journal of Coastal Research, Special Edition, 59, 1-6.

Rhie, T.M. and Chow, A. 1983. Numerical study of the turbulent flow past an isolated airfoil with trailing-edge separation. AIAA J., 21, 1525–1532.

Rosati, J.R., Frey, A.E., Brown, M.E., and Lin, L. 2011. Analysis of Dredged Material Placement Alternatives for Bottleneck Removal, Matagor-da Ship Channel, Texas," ERDC/CHL-TR-11-2, U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS. http://cirp.usace.army.mil/pubs/html/11-Rosati-Frey-TR-11-2.html, accessed 7 June 2011.

Ruessink, B.G., Miles, J.R., Feddersen, F., Guza, R.T. and Elgar, S., 2001. Modeling the alongshore current on barred beaches. Journal of Geophysical Research, 106(C10): 22,451-22,464. Saad, Y. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal Scientific Computing, 14, 461–469.

Saad, Y. 1994. ILUT: a dual threshold incomplete ILU factorization. Nu-merical Linear Algebra with Applications, 1, 387-402.

Saad, Y. and Schultz, M.H., 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical, Computing, 7, 856-869.

Saad, Y. 1996. Iterative methods for sparse linear systems. PWS Publish-ing Company, 528 pp.

Sakai, S., Kobayashi, N., and Koike, K. 1989. Wave breaking criterion with opposing current on sloping bottom: an extension of Goda’s breaker index. Annual Journal of Coastal Engineering 36:56-59, JSCE (in Japanese).

Sánchez, A., and Wu, W. 2011a. A non-equilibrium sediment transport model for coastal inlets and navigation channels. Journal of Coastal Research, Special Issue 59, 39-48. Sánchez, A., and Wu, W. 2011b. Nonuniform sediment transport modeling and Grays Harbor, WA. Proceedings Coastal Sediments ‘11, [In Press].

Sánchez, A., Wu, W. Rosati, J.D., Demirbilek, Z. Li, L., Rosati, J., Thomas, R., Reed, C., Watts, I., and Brown, M. 2011a. Validation of the Coastal Modeling System: Report III, Hydrodynamics. ERDC/CHL-TR-11-10, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.

Sánchez, A., Wu, W. Rosati, J.D., Demirbilek, Z. Li, L., Rosati, J., Thomas, R., Reed, C., Watts, I., and Brown, M. 2011b. Validation of the Coastal Modeling System: Report IV, Sediment Transport and Morphology Change. ERDC/CHL-TR-11-10, US Army Engineer Re-search and Development Center, Coastal and Hydraulics Laborato-ry, Vicksburg, MS.

Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference. pp. 517–524.

Shore protection manual 1984. 4th ed., 2 Vol., U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office.

Smagorinsky, J. 1963. General circulation experiments with the primitive equations, Monthly Weather Review, 93(3), 99-164.

Soulsby, R.L. 1983. The bottom boundary layer of shelf seas. In Physical Oceanography of Coastal and Shelf Seas, ed. B. Johns, 189-266. Elsevier, Amsterdam.

Soulsby, R.L. 1987. Calculating bottom orbital velocity beneath waves. Coastal Engineering 11, 371–380.

Soulsby, R.L. 1995. Bed shear-stresses due to combined waves and cur-rents. in Advanced in Coastal Morphodynamics, ed M.J.F Stive, H.J. de Vriend, J. Fredsoe, L. Hamm, R.L. Soulsby, C. Teisson, and J.C. Winterwerp, Delft Hydraulics, Netherlands. 4-20 to 4-23 pp. Soulsby, R.L. 1997. Dynamics of marine sands. Thomas Telford, London.

Soulsby, R.L., and Whitehouse, R.J.S.W. 1997. Threshold of sediment motion in coastal environments. Proceedings of the Pacific Coasts and Ports '97 Conference, Christchurch, 1, pp. 149154. University of Canterbury, New Zealand.

Spargo, E.A., Westerlink, J.J., Luetick, R.A.Jr., and Mark, D. 2004. ENPAC 2003: A tidal constituent database for Eastern North Pacific Ocean, Tech. Report ERDC/CHL-TR-04-12, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.

Stive, M.J.F. and De Vriend, H.J. 1994. Shear stresses and mean flow in shoaling and breaking waves. ASCE, New York, pp. 594-608.

Stone, H.L. 1968. Iterative Solution of Implicit Approximations of Multi-dimensional Partial Differential Equations, SIAM Journal of Nu-merical Analysis, 5(3), 530–538.

Svendsen, I.A. 2006. Introduction to nearshore hydrodynamics. World Scientific. Swart, D.H., 1976. Predictive equations regarding transports. Proc. 15th Coastal Engng. Conf., Honolulu. Coastal ASCE.

van Doormal, J.P., and Raithby, G.D. 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7, 147–163.

van Rijn, L.C. 1984. Sediment transport, part I: bed load transport. Journal of Hydraulic Engineering. ASCE, 110(10), 1431-1456.

van Rijn, L.C. 1989. Handbook: Sediment transport by currents and waves. Delft Hydraulics, Delft, The Netherlands.

van Rijn, L.C. 1993. Principles of sediment transport in rivers, estuaries, and coastal seas,

van Rijn, L.C. 1998. Principles of Coastal Morphology. AquaPublications, Amsterdam, The Netherlands.

van Rijn, L.C. 2007a. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport. Journal of Hydraulic Engineering, 133(6), 649-667.

van Rijn, L.C. 2007b. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport, Journal of Hydraulic Engineering, 133(6), 668-689.

Walstra, D.J.R., Roelvink, J.A., and Groeneweg, J. 2000. Calculation of wave-driven currents in a 3D mean flow model, 27th International Conference on Coastal Engineering, Sydney, 1050-1063.

Wang, P., Beck, T.M., and Roberts T.M. 2011. Modeling Regional-Scale Sediment Transport and Medium-term Morphology Change at a Dual Inlet System Examined with the Coastal Modeling System (CMS): A Case Study at Johns Pass and Blind Pass, West-central Florida. Journal of Coastal Research, Special Issue 59, pp. 49-60.

Watanabe, A. 1987. 3-dimensional numerical model of beach evolution. Proceedings Coastal Sediments ’87, 802-817.

Wu, W. 1991. The study and application of 1-D, horizontal 2-D and their nesting mathematical models for sediment transport. PhD dissertation,Wuhan Univ. of Hydraulic and Electric Engineering, Wuhan, China.

Wu, W. 2004. Depth-averaged 2-D numerical modeling of unsteady flow and nonuniform sediment transport in open channels. Journal of Hydraulic Engineering, ASCE, 135(10) 1013-1024.

Wu, W. 2007. Computational River Dynamics. Taylor & Francis, 494 p. Wu, W., Sánchez, A., Zhang, M. 2010. An implicit 2-D depth-averaged finite volume model of flow and sediment transport in coastal waters. Proceeding of the International Conference on Coastal Engineering, North America, 1 Feb 2011, Available at: http://journals.tdl.org/ICCE/article/view/1431. Date accessed: June 12.

Wu, W., Wang, S.S.Y., and Jia, Y. 2000. Nonuniform sediment transport in alluvial rivers. Journal of Hydraulic Research, IAHR, 38(6), 427-434.

Wu, W., Altinakar, M., and Wang, S.S.Y. 2006. Depth-averaged analysis of hysterersis between flow and sediment transport under unsteady conditions. International Journal of Sediment Research, 21(2), 101-112.

Wu, W., Sánchez, A., and Mingliang, Z. 2010. An implicit 2-D depth-averaged finite-volume model of flow and sediment transport in coastal waters. Proceeding of the International Conference on Coastal Engineering, [In Press ] Wu, W., Sánchez, A., and Mingliang, Z. 2011. An implicit 2-D shallow wa-ter flow model on an unstructured quadtree rectangular grid,” Journal of Coastal Research, [In Press]

Zarillo, G.A., Brehin F. G. A. 2007. Hydrodynamic and Morphologic Mod-eling at Sebastian Inlet, FL. Proceedings of Coastal Sediments ’07, New Orleans, LA, ASCE Press, 1297-1311

Zheng, J.,H. Mase, Z. Demirbilek, and L. Lin. 2008. Implementation and evaluation of alternative wave breaking formulas in a coastal spec-tral wave model. Ocean Engineering Zhu, J. 1991. A low-diffusive and oscillation-free convection scheme. Communications in Applied Numerical Methods, 7, 225-232.

Zwart, P.J., Raithby, G. D., Raw, M.J. 1998. An integrated space-time fi-nite volume method for moving boundary problems. Numerical Heat Transfer, B34, 257.

Zundel, A.K., 2006. Surface-water Modeling System reference manual – Version 9.0. Brigham Young University Environmental Modeling Research Laboratory, Provo, UT.