CMS-Flow:Eddy Viscosity
In CMS-Flow eddy viscosity is calculated as the sum of a base value Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_{0}} , the current-related eddy viscosity Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c} and the wave-related eddy viscosity Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_w}
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_t = \nu_0 + \nu_c + \nu_w } | (1) |
The base value for the eddy viscosity is approximately equal to the kinematic eddy viscosity can be changed using the advanced cards (Click here for further details).
Current-Related Eddy Viscosity Component
There are four options for the current-related eddy viscosity: FALCONER, PARABOLIC, SUBGRID, and MIXING-LENGTH. The default turbulence model is the subgrid model, but may be changed with the advanced card TURBULENCE_MODEL.
Falconer Equation
The Falconer (1980) equation is the method is the default method used in the previous version of CMS, known as M2D. The first is the Falconer (1980) equation given by
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c = 0.575c_b|U|h } | (2) |
where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_b} is the bottom friction coefficient, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U} is the depth-averaged current velocity, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h} is the total water depth.
Parabolic Model
The second option is the parabolic model given by
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c = c_1 u_{*} h } | (3) |
where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_1} is approximately equal to Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \kappa/6} .
Subgrid Turbulence Model
The third option for calculating Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c} is the subgrid turbulence model given by
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_{c} = c_1 u_{*} h + c_1 \Delta |\bar{S}| } | (4) |
where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_1} and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_2} are empirical coefficients related the turbulence produced by the bed and horizontal velocity gradients, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta} is the average grid area. Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_1} is approximately equal to 0.0667 (default) but may vary from 0.01-0.2. Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_{2}} is equal to approximately the Smagorinsky coefficient and may vary from 0.1 to 0.3 (default is 0.2). Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\bar{S}|} is equal to
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\bar{S}| = \sqrt{2\bar{S}_{ij}\bar{S}_{ij}} = \sqrt{ 2\biggl( \frac{ \partial U}{\partial x} \biggr) ^2 + 2\biggl( \frac{ \partial V}{\partial y} \biggr) ^2 + \biggl( \frac{ \partial U}{\partial y} + \frac{ \partial V}{\partial x} \biggr) ^2 } } | (7) |
and
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bar{S}_{ij} = \frac{1}{2} \biggl( \frac{ \partial U_i} { \partial x_j} +\frac{ \partial U_j} { \partial x_i} \biggr) } | (8) |
The subgrid turbulence model parameters may be changed in the advanced cards EDDY_VISCOSITY_BOTTOM, and EDDY_VISCOSITY_HORIZONTAL. Click here for further details.
Mixing Length Model
The Mixing Length Model implemented in CMS includes a component due to the vertical shear and is given by
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_{c} = \sqrt{ (c_1 u_{*} h)^2 + (l_h^2 |\bar{S}|)^2} } | (9) |
where the mixing length Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle l_h } is determined by Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle l_h = \kappa \min{c_2,y}} , with Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y } being the distance to the nearest wall and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_2 } is an empirical coefficient between 0.3-1.2. Eq. (9) takes into account the effects of bed shear and horizontal velocity gradients respectively through the first and second terms on its right-hand side. It has been found that the modified mixing length model is better than the depth-averaged parabolic eddy viscosity model that accounts for only the bed shear effect.
Wave-Related Eddy Viscosity
The wave component of the eddy viscosity is separated into two components
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_w = c_3 u_w H_s + c_4 h \biggl( \frac{D_{br}}{\rho} \biggr) ^{1/3} } | (10) |
where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_3} and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_4} are empirical coefficients, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_s } is the significant wave height and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u_w} is bottom orbital velocity based on the significant wave height. The first term on the R.H.S. of Eq. (10) represents the component due to bottom friction and the second term represents the component due to wave breaking. The coefficient Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_3} is approximately equal to 0.1 and may vary from 0.05 to 0.2. The coefficient Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_4} is approximately equal to 0.08 and may vary from 0.04 to 0.15.
References
- LARSON, M.; HANSON, H., and KRAUS, N. C., 2003. Numerical modeling of beach topography change. Advances in Coastal Modeling, V.C. Lakhan (eds.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365.