CMS-Wave:Governing Equations
Wave-action balance equation with diffraction
Taking into account the effect of an ambient horizontal current or wave behavior, CMS-Wave is based on the steady wave-action balance equation (Mase 2001)
\begin{equation}
\end{equation}
where is the wave-action density to be solved and is a function of frequency σ and direction θ. E(σ,θ) is spectral wave density representing the wave energy per unit water-surface area per frequency interval. In the presence of an ambient current, the wave-action density is conserved, whereas the spectral wave density is not (Bretherton and Garrett 1968; Whitham 1974). Both wave diffraction and energy dissipation are included in the governing equation. Implementation of the numerical scheme is described elsewhere in the literature (Mase 2001; Mase et al. 2005a). C and Cg are wave celerity and group velocity, respectively; x and y are the horizontal coordinates; Cx, Cy, and Cθ are the characteristic velocity with respect to x, y, and, θ respectively; Ny and Nyy denote the first and second derivatives of N with respect to y, respectively; κ is an empirical parameter representing the intensity of diffraction effect; εb is the parameterization of wave breaking energy dissipation; S denotes additional source Sin and sink Sds (e.g., wind forcing, bottom friction loss, etc.) and nonlinear wave-wave interaction term.
Symbol | Description |
---|---|
Wave frequency | |
Wave action | |
Spectral wave density | |
Wave celerity | |
Wave group velocity |