CMS-Flow:Eddy Viscosity

From CIRPwiki
Revision as of 19:00, 1 October 2014 by Deleted (talk | contribs)
Jump to navigation Jump to search

The term eddy viscosity arises from the fact that small-scale vortices or eddies on the order of the grid cell size are not resolved, and only the large-scale flow is simulated. The eddy viscosity is intended to simulate the dissipation of energy at smaller scales than the model can simulate. In the nearshore environment, large mixing or turbulence occurs due to waves, wind, bottom shear, and strong horizontal gradients. Therefore, the eddy viscosity is an important parameter which can have a large influence on the calculated flow field and resulting sediment transport. In CMS-Flow, the total eddy viscosity is equal to the sum of three parts: 1) a base value ; 2) the current-related eddy viscosity ; and 3) the wave-related eddy viscosity defined as follows:

  (1)

The base value is approximately equal to the kinematic viscosity but may be changed by the user. The other two components are described in the sections below.


Current-Related Eddy Viscosity Component

There are four algebraic models for the current-related eddy viscosity: 1) Falconer Equation; 2) depth-averaged parabolic; 3) subgrid; and 4) mixing-length. The default turbulence model is the subgrid model but may be changed by the user.

Falconer Equation

The Falconer (1980) equation is the method is the default method used in the previous version of CMS, known as M2D. The first is the Falconer (1980) equation given by

  (2)

where is the bottom friction coefficient, is the depth-averaged current velocity magnitude, and is the total water depth.

Depth-varaged Parabolic Model

The second option is the parabolic model given by

  (3)

where is the bed shear velocity, and is approximately equal to but is set as a calibrated parameter whose value can be up to 1.0 in irregular waterways with weak meanders or even larger for strongly curved waterways.

Subgrid Model

The third option for calculating is the subgrid turbulence model given by

  (4)

where:

= vertical shear coefficient [-]
= horizontal shear coefficient [-]
= (average) grid size [m]
= deformation (strain rate) tensor

The empirical coefficients and are related to the turbulence produced by the bed shear and horizontal velocity gradients. The parameter is approximately equal to (default) but may vary from 0.01 to 0.2. The variable is equal to approximately the Smagorinsky coefficient (Smagorinsky 1963) and may vary between 0.1 and 0.3 (default is 0.2).


Mixing Length Model

The Mixing Length Model implemented in CMS for the current-related eddy viscosity includes a component due to the vertical shear and is given by (Wu 2007)

  (7)

where:

= the mixing length
=distance to the nearest wall [m]
= horizontal shear coefficient [-]

The empirical coefficient is usually between 0.3 and1.2. The effects of bed shear and horizontal velocity gradients, respectively, are taken into account through the first and second terms on the right-hand side of Equation (7). It has been found that the modified mixing length model is better than the depth-averaged parabolic eddy viscosity model that accounts for only the bed shear effect.

Wave-Related Eddy Viscosity

The wave component of the eddy viscosity is separated into two components

  (8)

where

= wave bottom friction coefficient for eddy viscosity [-]

= peak bottom orbital velocity [m/s] based on the significant wave height [m] and peak wave period [s]

= wave breaking coefficient for eddy viscosity [-]

= wave breaking dissipation [N/m/s].

The first term on the righ-hand side of Equation (8) represents the component due to bottom friction and the second term represents the component due to wave breaking. The coefficient is approximately equal to 0.5 and may vary from 0.5 to 2.0. The coefficient is approximately equal to 0.1 and may vary from 0.04 to 0.15.


Wave Flux Velocity

In the presence of waves, the oscillatory wave motion produces a net time-averaged mass (volume) transport referred to as Stokes drift. In the surf zone, the surface roller also provides a contribution to the mean wave mass flux. The mean wave mass flux velocity, or simply the mass flux velocity, is defined as the mean wave volume flux divided by the local water depth and is approximated here as (Phillips 1977; Svendsen 2006)

  (11)

where:

= wave energy =
= significant wave height [m]
= surface roller energy density [N/m]
= wave unit vector [-]
= wave celerity [m/s].

The first component is due to the Stokes velocity while the second component is due to the surface roller (only present in the surf zone).

References

  • LARSON, M.; HANSON, H., and KRAUS, N. C., 2003. Numerical modeling of beach topography change. Advances in Coastal Modeling, V.C. Lakhan (eds.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365.

Documentation Portal