CMS-Flow:Subgrid Turbulence Model

From CIRPwiki
Revision as of 20:03, 17 January 2011 by Deleted (talk | contribs)
Jump to navigation Jump to search


In CMS-Flow eddy viscosity is calculated as the sum of a base value Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_{0}} , the current-related eddy viscosity Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c} and the wave-related eddy viscosity Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_w}

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_t = \nu_0 + \nu_c + \nu_w } (1)

The base value for the eddy viscosity is approximately equal to the kinematic eddy viscosity can be changed using the advanced cards (Click [here] for further details).

Current-Related Eddy Viscosity Component

There are four options for the current-related eddy viscosity: FALCONER, PARABOLIC, SUBGRID, and MIXING-LENGTH. The default turbulence model is the subgrid model, but may be changed with the advanced card TURBULENCE_MODEL.

Falconer Equation

The Falconer (1980) equation is the method is the default method used in the previous version of CMS, known as M2D. The first is the Falconer (1980) equation given by

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c = 0.575c_b|U|h } (4)

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_b} is the bottom friction coefficient, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle U} is the depth-averaged current velocity, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle h} is the total water depth.

Parabolic Model

The second option is the parabolic model given by

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c = c_0 u_{*} h } (5)

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_0} is approximately equal to Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \kappa/6} .

Subgrid Turbulence Model

The third option for calculating Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_c} is the subgrid turbulence model given by

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_{c} = \sqrt{ (c_0 u_{*} h)^2 + (c_1 \Delta |\bar{S}|)^2} } (6)

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_0} and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_1} are empirical coefficients related the turbulence produced by the bed and horizontal velocity gradients, and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta} is the average grid area. Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_0} is approximately equal to 0.0667 (default) but may vary from 0.01-0.2. Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle c_{1}} is equal to approximately the square of the Smagorinsky coefficient and may vary from 0.1 to 0.5 (default is 0.4). Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\bar{S}|} is equal to

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |\bar{S}| = \sqrt{2\bar{S}_{ij}\bar{S}_{ij}} = \sqrt{ 2\biggl( \frac{ \partial U}{\partial x} \biggr) ^2 + 2\biggl( \frac{ \partial V}{\partial y} \biggr) ^2 + \biggl( \frac{ \partial U}{\partial y} + \frac{ \partial V}{\partial x} \biggr) ^2 } } (7)

and

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \bar{S}_{ij} = \frac{1}{2} \biggl( \frac{ \partial U_i} { \partial x_j} +\frac{ \partial U_j} { \partial x_i} \biggr) } (8)

The subgrid turbulence model parameters may be changed in the advanced cards EDDY_VISCOSITY_BOTTOM, and EDDY_VISCOSITY_HORIZONTAL.

Mixing Length Model

Wave-Related Eddy Viscosity

The wave component of the eddy viscosity is calculated as

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \nu_w = \Lambda u_w H_s } (2)

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Lambda} is an empirical coefficient with a default value of 0.5 but may vary between 0.25 and 1.0. Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_s } is the significant wave height and Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u_w} is bottom orbital velocity based on the significant wave height. Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Lambda} may be changed using the advanced card EDDY_VISCOSITY_WAVE.

Outside of the surf zone the bottom orbital velocity is calculated as

  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u_w = \frac{ \pi H_s}{T_p \sinh(kh) } } (2)

where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_s} is the significant wave height, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T_p} is the peak wave period, Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k=2\pi/L} is the wave number. Inside the surf zone, the turbulence due to wave breaking is considered by increasing the bottom orbital velocity as


  Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle u_w = \frac{ H_s}{2h}\sqrt{gh} } (3)

References

  • LARSON, M.; HANSON, H., and KRAUS, N. C., 2003. Numerical modeling of beach topography change. Advances in Coastal Modeling, V.C. Lakhan (eds.), Elsevier Oceanography Series, 67, Amsterdam, The Netherlands, 337-365.

Documentation Portal