CMS-Flow:Wave Eqs
Jump to navigation
Jump to search
big
Wave-action balance equation with diffraction
Taking into account the effect of an ambient horizontal current or wave behavior, CMS-Wave is based on the steady wave-action balance equation (Mase 2001)
math \frac{\partial c_x N }{\partial x}
+ \frac{\partial c_y N }{\partial y} + \frac{\partial c_{\theta} N }{\partial \theta} = \frac{\kappa}{2 \sigma} \frac{\partial (h U_j )}{\partial x_j} = S /math
for math j=1,2 /math
math \frac{\partial ( h U_i ) }{\partial t} + \frac{\partial (h U_i U_j )}{\partial x_j}
- \epsilon_{ij3} f_c U_j h = - g h \frac{\partial \eta }{\partial x_j}
- \frac{h}{\rho_0} \frac{\partial p_a }{\partial x_j}
+ \frac{\partial }{\partial x_j} \biggl ( \nu_t h \frac{\partial U_i }{\partial x_j} \biggr )
+ \frac{\tau_i }{\rho} /math
for math i=1,2 /math and math j=1,2 /math
Symbol | Description |
---|---|
math \sigma /math | Wave frequency |
math N /math | Wave action |
math E /math | Spectral wave density |
math c /math | Wave celerity |
math c_g /math | Wave group velocity |
/big Documentation Portal