CMS-Wave:Wave-current Interaction

From CIRPwiki
Jump to navigation Jump to search

Under Construction

Wave-current Interaction

The characteristic velocities cx, cy, and cθ are calculated as

\begin{equation} c_x = c_g \cos \theta + U \end{equation} \begin{equation} c_y = c_g \sin \theta + V \end{equation} \begin{equation} c_{\theta} = \frac{\sigma}{\sinh 2 k h} \biggl( \sin \theta \frac{\partial h}{\partial x} - \cos \theta \frac{\partial h}{\partial y } \biggr) + \cos \theta \sin \theta \frac{\partial U}{\partial x} - \cos ^2 \theta \frac{\partial U}{\partial y} + \sin ^2 \theta \frac{\partial V}{\partial x} - \cos \theta \sin \theta \frac{\partial V}{\partial y} \end{equation}

The dispersion relationships between the relative angular frequency σ, the absolute angular frequency ω, the wave number vector k, and the current velocity vector U = U2 +V2 are (Jonsson 1990)


Symbol Description
c Wave celerity
cg Wave group velocity
σ Wave frequency
E Spectral wave density
k Wave number
h Total water depth
U Depth-averaged current velocity in x-direction
V Depth-averaged current velocity in y-direction

Documentation Portal