CMS-Flow:Incipient Motion: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
Deleted (talk | contribs)
No edit summary
Rdchldlj (talk | contribs)
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
=Incipient Motion=
In the case of the Lund-CIRP (Camenen and Larson 2005, 2007, 2008) and Watanabe (1987) formulas, the incipient motion is based on the critical Shields parameter and estimated using the formula proposed by Soulsby (1997):


== Komar and Miller ==
{{Equation|<math>
Komar and Miller (1975):
\Theta_{cr} = \frac{0.3}{1 + 1.2d_*} + 0.055 \left[1 - exp(-0.02d_*)  \right]
</math>|1}}
 
in which the dimensionless grain size (d<sub>*</sub>) is defined


{{Equation|<math>
{{Equation|<math>
   U_{crc} =  
d_* = d \left[\frac{(s-1)g}{v^2}   \right]^{1/3}
  \begin{cases}  
</math>|2}}
0.19 (d_{50})^{0.1} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.1 \le d_{50} \le 0.5 mm \\  
 
8.5 (d_{50})^{0.6} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.5 \le d_{50} \le 2.0 mm
The critical shear stress for incipient motion is given by
  \end{cases}
 
</math>|11}}
{{Equation|<math>\frac{\tau_{cr}}{g(\rho_s - \rho)d} = \Theta_{cr}</math>|3}}
 
The critical depth-averaged velocity for currents alone (U<sub>crc</sub>) is calculated using the formula proposed by van Rijn (1984 c):
 
{{Equation|<math>U_{crc} =
\left\{
\begin{align}
&0.19 \ d_{50}^{0.1}log_{10}\left(\frac{4h}{d_{90}} \right), \quad\quad for \ 0.1 \leq d_{50} \leq 0.5 \ mm \\
&8.5 \ d_{50}^{0.6}log_{10}\left(\frac{4h}{d_{90}}   \right), \quad\quad for \ 0.5 \leq d_{50} \leq 2.0 \ mm
\end{align}
\right.
</math>|4}}
 
where d<sub>50</sub> and d<sub>90</sub> are the sediment grain size in meters of 50<sup>th</sup> and 90<sup>th</sup> percentiles, respectively. The above criteria are used in the van Rijn (2007 a,b) and Soulsby-van Rijn (Soulsby 1997) transport formulas.
 
The critical bottom orbital velocity magnitude for waves alone is calculated using the formulation of Komar and Miller (1975):
 


{{Equation|<math>
{{Equation|<math>
   U_{crw} =  
   U_{crw} =  
   \begin{cases}  
   \begin{cases}  
0.24 [(s-1)g]^{0.66} (d_{50})^{0.33} T_p^{0.33} , & \text{for } 0.1 \le d_{50} \le 0.5 mm \\  
0.24 [(s-1)g]^{0.66} (d_{50})^{0.33} T_p^{0.33} , & \text{for } 0.1 \le d_{50} \le 0.5 \ mm \\  
0.95 [(s-1)g]^{0.57} (d_{50})^{0.43} T_p^{0.14}, &  \text{for } 0.5 \le d_{50} \le 2.0 mm
0.95 [(s-1)g]^{0.57} (d_{50})^{0.43} T_p^{0.14}, &  \text{for } 0.5 \le d_{50} \le 2.0 \ mm
   \end{cases}
   \end{cases}
</math>|12}}
</math>|5}}
 
where T<sub>p</sub> is the peak wave period.


= References =  
= References =  
*Camenen, B., and M. Larson. 2005. A general formula for non-cohesive bed-load sediment transport. Estuarine, Coastal and Shelf Science (63)2:49–260.
*Camenen, B., and M. Larson. 2007. A unified sediment transport formulation for coastal inlet application. ERDC/CHL CR-07-1. Vicksburg, MS: US Army Engineer Research and Development Center.
*Camenen, B., and M. Larson. 2008. A general formula for noncohesive suspended sediment transport. Journal of Coastal Research 24 (3):615–627.
*Komar, P. D., and M. C. Miller. 1975. On the comparison between the threshold of sediment motion under waves and unidirectional currents with a discussion of the practical evaluation of the threshold. Journal of Sedimentary Petrology (45):362–367.
*Soulsby, R. L. 1997. Dynamics of marine sands. London, England: Thomas Telford Publications.
*van Rijn, L. C. 1984c. Sediment transport, Part III: Bed forms and alluvial roughness. Journal of Hydraulic Engineering, ASCE 110(12):1733–1754.
*Watanabe, A. 1987. 3-dimensional numerical model of beach evolution. In Proceedings, Coastal Sediments ’87, 802–817. New Orleans, LA.


----
----
[[CMS#Documentation_Portal | Documentation Portal]]
[[CMS#Documentation_Portal | Documentation Portal]]

Latest revision as of 15:41, 15 January 2015

Incipient Motion

In the case of the Lund-CIRP (Camenen and Larson 2005, 2007, 2008) and Watanabe (1987) formulas, the incipient motion is based on the critical Shields parameter and estimated using the formula proposed by Soulsby (1997):

  Θcr=0.31+1.2d*+0.055[1exp(0.02d*)] (1)

in which the dimensionless grain size (d*) is defined

  d*=d[(s1)gv2]1/3 (2)

The critical shear stress for incipient motion is given by

  τcrg(ρsρ)d=Θcr (3)

The critical depth-averaged velocity for currents alone (Ucrc) is calculated using the formula proposed by van Rijn (1984 c):

  Ucrc={0.19 d500.1log10(4hd90),for 0.1d500.5 mm8.5 d500.6log10(4hd90),for 0.5d502.0 mm (4)

where d50 and d90 are the sediment grain size in meters of 50th and 90th percentiles, respectively. The above criteria are used in the van Rijn (2007 a,b) and Soulsby-van Rijn (Soulsby 1997) transport formulas.

The critical bottom orbital velocity magnitude for waves alone is calculated using the formulation of Komar and Miller (1975):


  Ucrw={0.24[(s1)g]0.66(d50)0.33Tp0.33,for 0.1d500.5 mm0.95[(s1)g]0.57(d50)0.43Tp0.14,for 0.5d502.0 mm (5)

where Tp is the peak wave period.

References

  • Camenen, B., and M. Larson. 2005. A general formula for non-cohesive bed-load sediment transport. Estuarine, Coastal and Shelf Science (63)2:49–260.
  • Camenen, B., and M. Larson. 2007. A unified sediment transport formulation for coastal inlet application. ERDC/CHL CR-07-1. Vicksburg, MS: US Army Engineer Research and Development Center.
  • Camenen, B., and M. Larson. 2008. A general formula for noncohesive suspended sediment transport. Journal of Coastal Research 24 (3):615–627.
  • Komar, P. D., and M. C. Miller. 1975. On the comparison between the threshold of sediment motion under waves and unidirectional currents with a discussion of the practical evaluation of the threshold. Journal of Sedimentary Petrology (45):362–367.
  • Soulsby, R. L. 1997. Dynamics of marine sands. London, England: Thomas Telford Publications.
  • van Rijn, L. C. 1984c. Sediment transport, Part III: Bed forms and alluvial roughness. Journal of Hydraulic Engineering, ASCE 110(12):1733–1754.
  • Watanabe, A. 1987. 3-dimensional numerical model of beach evolution. In Proceedings, Coastal Sediments ’87, 802–817. New Orleans, LA.



Documentation Portal