TR-08-13:Refs: Difference between revisions
No edit summary |
mNo edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
==References== | ==References== | ||
Ahrens, J. P., and M. S. Heimbaugh. 1988. ''Approximate upper limit of irregular wave runup on riprap''. Coastal Engineering Research Center Technical Report CERC-88-5. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | Ahrens, J. P., and M. S. Heimbaugh. 1988. ''Approximate upper limit of irregular wave runup on riprap''. Coastal Engineering Research Center Technical Report CERC-88-5. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | ||
Ahrens, J. P., and M. F. Titus. 1981. ''Laboratory data report: irregular wave runup on plane smooth slopes''. Coastal Engineering Research Center unpublished Laboratory Report. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | Ahrens, J. P., and M. F. Titus. 1981. ''Laboratory data report: irregular wave runup on plane smooth slopes''. Coastal Engineering Research Center unpublished Laboratory Report. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | ||
Battjes, J. A. 1972. Set-up due to irregular waves. ''Proceedings 13''<sup>''th</sup> ''''International Conference on Coastal Engineering'', ASCE, 1993-2004. | Battjes, J. A. 1972. Set-up due to irregular waves. ''Proceedings 13''<sup>''th</sup> ''''International Conference on Coastal Engineering'', ASCE, 1993-2004. | ||
Battjes, J. A., and J. Janssen. 1978. Energy loss and set-up due to breaking of random waves. ''Proceedings 16''<sup>''th</sup> ''''International Conference Coastal Engineering'', ASCE, 569-587. | Battjes, J. A., and J. Janssen. 1978. Energy loss and set-up due to breaking of random waves. ''Proceedings 16''<sup>''th</sup> ''''International Conference Coastal Engineering'', ASCE, 569-587. | ||
Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. ''Journal of Geophysical Research'' 104(C4):7,649-7,666. | Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. ''Journal of Geophysical Research'' 104(C4):7,649-7,666. | ||
Bouws, E., and G. J. Komen. 1983. On the balance between growth and dissipation in extreme, depth limited wind-sea in the southern North Sea.'' Journal of Physical Oceanography'' 13:1,653-1,658. | Bouws, E., and G. J. Komen. 1983. On the balance between growth and dissipation in extreme, depth limited wind-sea in the southern North Sea.'' Journal of Physical Oceanography'' 13:1,653-1,658. | ||
Bretherton, F. P., and C. J. R. Garrett. 1968. Wave trains in inhomogeneous moving media. ''Proceedings Royal Society of London'' A(302):529-554. | Bretherton, F. P., and C. J. R. Garrett. 1968. Wave trains in inhomogeneous moving media. ''Proceedings Royal Society of London'' A(302):529-554. | ||
Briggs, M. J., and P.L.-F. Liu. 1993. Experimental study on monochromatic wave-ebb current interaction. ''Proceedings 2''<sup>''nd</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 93'', ASCE, 474-488. | Briggs, M. J., and P.L.-F. Liu. 1993. Experimental study on monochromatic wave-ebb current interaction. ''Proceedings 2''<sup>''nd</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 93'', ASCE, 474-488. | ||
Briggs, M. J., and Z. Demirbilek. 1996. Wave-current interaction in inlets. ''Proceedings 25th Coastal Engineering Conference'', ASCE, 1,219-1,232. | Briggs, M. J., and Z. Demirbilek. 1996. Wave-current interaction in inlets. ''Proceedings 25th Coastal Engineering Conference'', ASCE, 1,219-1,232. | ||
Buttolph, A. M., C. W. Reed, N. C. Kraus, N. Ono, M. Larson, B. Camenen, H. Hanson, T. Wamsley, and A. Zundel. 2006. ''Two-dimensional depth-averaged circulation model CMS-M2D: Version 3.0: Report 2, sediment transport and morphology change''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-06-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Buttolph, A. M., C. W. Reed, N. C. Kraus, N. Ono, M. Larson, B. Camenen, H. Hanson, T. Wamsley, and A. Zundel. 2006. ''Two-dimensional depth-averaged circulation model CMS-M2D: Version 3.0: Report 2, sediment transport and morphology change''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-06-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Chawla A., and J. T. Kirby. 2002. Monochromatic and random wave breaking at blocking points. ''Journal of Geophysical Research'' 107(C7), 10.1029/2001JC001042. | Chawla A., and J. T. Kirby. 2002. Monochromatic and random wave breaking at blocking points. ''Journal of Geophysical Research'' 107(C7), 10.1029/2001JC001042. | ||
Chen, W., V. G. Panchang, and Z. Demirbilek. 2005. On the modeling of wave-current interaction using the elliptic mild-slope wave equation. ''Ocean Engineering'' 32(17-18):2,135-2,164. | Chen, W., V. G. Panchang, and Z. Demirbilek. 2005. On the modeling of wave-current interaction using the elliptic mild-slope wave equation. ''Ocean Engineering'' 32(17-18):2,135-2,164. | ||
Collins, J. I. 1972. Prediction of shallow water spectra. ''Journal of Geophysical Research'' 77(15):2693-2707. | Collins, J. I. 1972. Prediction of shallow water spectra. ''Journal of Geophysical Research'' 77(15):2693-2707. | ||
Dally, W. R., R. G. Dean, and R. A. Dalrymple. 1985. Wave height variation across beaches of arbitrary profile. ''Journal of Geophysical Research'' 90(C6):11,917-11,927. | Dally, W. R., R. G. Dean, and R. A. Dalrymple. 1985. Wave height variation across beaches of arbitrary profile. ''Journal of Geophysical Research'' 90(C6):11,917-11,927. | ||
Dean, R. G. 1977. ''Equilibrium beach profiles: U.S. Atlantic and Gulf Coasts''. Ocean Engineering Technical Report No. 12. Newark, DE: Department of Civil Engineering and College of Marine Studies, University of Delaware. | Dean, R. G. 1977. ''Equilibrium beach profiles: U.S. Atlantic and Gulf Coasts''. Ocean Engineering Technical Report No. 12. Newark, DE: Department of Civil Engineering and College of Marine Studies, University of Delaware. | ||
Dean, R. G., and R. A. Dalrymple. 1984.'' Water wave mechanics for engineers and scientitists''. Englewood Cliffs, NJ: Prentice-Hall, Inc. | Dean, R. G., and R. A. Dalrymple. 1984.'' Water wave mechanics for engineers and scientitists''. Englewood Cliffs, NJ: Prentice-Hall, Inc. | ||
Demirbilek, Z., L. Lin, and O.G. Nwogu. 2008. ''Wave modeling for jetty rehabilitation at the Mouth of the Columbia River, Washington/Oregon, USA''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-08-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Demirbilek, Z., L. Lin, and O.G. Nwogu. 2008. ''Wave modeling for jetty rehabilitation at the Mouth of the Columbia River, Washington/Oregon, USA''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-08-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Demirbilek, Z., L. Lin, and A. Zundel. 2007. ''WABED model in the SMS: Part 2. Graphical interface''. Coastal and Hydraulics Laboratory Engineering Technical Note ERDC/CHL CHETN-I-74. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Demirbilek, Z., L. Lin, and A. Zundel. 2007. ''WABED model in the SMS: Part 2. Graphical interface''. Coastal and Hydraulics Laboratory Engineering Technical Note ERDC/CHL CHETN-I-74. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Demirbilek, Z., and V. Panchang. 1998. ''CGWAVE: A coastal surface-water wave model of the mild-slope equation''. Coastal and Hydraulics Laboratory Technical Report CHL-98-26. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | Demirbilek, Z., and V. Panchang. 1998. ''CGWAVE: A coastal surface-water wave model of the mild-slope equation''. Coastal and Hydraulics Laboratory Technical Report CHL-98-26. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | ||
Goda, Y. 1970. A synthesis of breaker indices. ''Transactions of the Japan Society of Civil Engineers'' 13:227-230 (in Japanese). | Goda, Y. 1970. A synthesis of breaker indices. ''Transactions of the Japan Society of Civil Engineers'' 13:227-230 (in Japanese). | ||
Goda, Y. 1985. ''Random seas and design of maritime structures''. Tokyo: University of Tokyo Press. | Goda, Y. 1985. ''Random seas and design of maritime structures''. Tokyo: University of Tokyo Press. | ||
Goda, Y. 2006. Examination of the influence of several factors on longshore current computation with random waves. ''Coastal Engineering'' 53(2-3):157-170. | Goda, Y. 2006. Examination of the influence of several factors on longshore current computation with random waves. ''Coastal Engineering'' 53(2-3):157-170. | ||
Guza, R. T., and E. B. Thornton. 1981. Wave set-up on a natural beach. ''Journal of Geophysical Research'' 86(C5):4,133-4,137. | Guza, R. T., and E. B. Thornton. 1981. Wave set-up on a natural beach. ''Journal of Geophysical Research'' 86(C5):4,133-4,137. | ||
Hardy, T. A. 1993. ''The attenuation of spectral transformation of wind waves on a coral reef''. Queendsland, Australia: James Cook University of North Queensland, Townsville, 336 p. | Hardy, T. A. 1993. ''The attenuation of spectral transformation of wind waves on a coral reef''. Queendsland, Australia: James Cook University of North Queensland, Townsville, 336 p. | ||
Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerbrug, P. Muller, D. J. Olbers, K. Richter, W. Sell, and H. Walden. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). ''Deutsche Hydrographische Zeitschrift'' A80(12), 95 p. | Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerbrug, P. Muller, D. J. Olbers, K. Richter, W. Sell, and H. Walden. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). ''Deutsche Hydrographische Zeitschrift'' A80(12), 95 p. | ||
Headquarters, U.S. Army Corps of Engineers. 2002. ''Coastal Engineering Manual''. EM 1110-2-1100. Washington, DC (in 6 volumes). | Headquarters, U.S. Army Corps of Engineers. 2002. ''Coastal Engineering Manual''. EM 1110-2-1100. Washington, DC (in 6 volumes). | ||
Hearn, C. J. 1999. Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. ''Journal of Geophysical Research'' 104(C12):30,007-30,019. | Hearn, C. J. 1999. Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. ''Journal of Geophysical Research'' 104(C12):30,007-30,019. | ||
Hedges, T. S., K. Anastasiou, and D. Gabriel. 1985. Interaction of random waves and currents. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 111(2):275-288, ASCE. | Hedges, T. S., K. Anastasiou, and D. Gabriel. 1985. Interaction of random waves and currents. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 111(2):275-288, ASCE. | ||
Holthuijsen, L. H., A. Herman, and N. Booij. 2004. Phase-decoupled refraction-diffraction for spectral wave models. ''Journal of Coastal Engineering'' 49:291-305. | Holthuijsen, L. H., A. Herman, and N. Booij. 2004. Phase-decoupled refraction-diffraction for spectral wave models. ''Journal of Coastal Engineering'' 49:291-305. | ||
Huang, N. E., D. T. Chen, C. C. Tung and J. R. Smith. 1972. Interactions between steady non-uniform currents and gravity waves with application for current instruments. ''Journal of Physical Oceanography'' 2:420 431. | Huang, N. E., D. T. Chen, C. C. Tung and J. R. Smith. 1972. Interactions between steady non-uniform currents and gravity waves with application for current instruments. ''Journal of Physical Oceanography'' 2:420 431. | ||
Iwagaki, Y., T. Asano, Y. Yamanaka, and F. Nagai. 1980. Wave breaking due to currents. ''Annual Journal of Coastal Engineering'' 27:30-34, JSCE (in Japanese). | Iwagaki, Y., T. Asano, Y. Yamanaka, and F. Nagai. 1980. Wave breaking due to currents. ''Annual Journal of Coastal Engineering'' 27:30-34, JSCE (in Japanese). | ||
Jenkins, A. D., and O. M. Phillips. 2001. A simple formula for nonlinear wave-wave interaction. ''Journal of Offshore and Polar Engineering'' 11(2):81-86. | Jenkins, A. D., and O. M. Phillips. 2001. A simple formula for nonlinear wave-wave interaction. ''Journal of Offshore and Polar Engineering'' 11(2):81-86. | ||
Johnson, J. W. 1952. Generalized wave diffraction diagrams. ''Proceedings 2''<sup>''nd</sup> ''''Conference on Coastal Engineering'', ASCE. | Johnson, J. W. 1952. Generalized wave diffraction diagrams. ''Proceedings 2''<sup>''nd</sup> ''''Conference on Coastal Engineering'', ASCE. | ||
Jonsson, I. G. 1990. Wave-current interactions. Chapter 7, ''The Sea''. B. Le Mehaute and D. Hanes (ed.). New York, NY: John Wiley and Sons, 65-120. | Jonsson, I. G. 1990. Wave-current interactions. Chapter 7, ''The Sea''. B. Le Mehaute and D. Hanes (ed.). New York, NY: John Wiley and Sons, 65-120. | ||
Komar, P. D. 1998. Beach processes and sedimentation. 2<sup>nd</sup> ed. Upper Saddle River, NJ: Prentice-Hall, Inc. | Komar, P. D. 1998. Beach processes and sedimentation. 2<sup>nd</sup> ed. Upper Saddle River, NJ: Prentice-Hall, Inc. | ||
Komen, G. J., S. Hasselrnann, and K. Hasselmam. 1984. On the existence of a fully developed wind-sea spectrum. ''Journal of Physical Oceanography'' 14:1,271-1,285. | Komen, G. J., S. Hasselrnann, and K. Hasselmam. 1984. On the existence of a fully developed wind-sea spectrum. ''Journal of Physical Oceanography'' 14:1,271-1,285. | ||
Kraus, N. C., L. Lin, B. K. Batten, and G. L. Brown. 2006. ''Matagorda Ship Channel, Texas: jetty stability study''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-06-7. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Kraus, N. C., L. Lin, B. K. Batten, and G. L. Brown. 2006. ''Matagorda Ship Channel, Texas: jetty stability study''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-06-7. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Lai, R. J., S. R. Long, and N. E. Huang. 1989. Laboratory studies of wave-current interaction: Kinematics of the strong interaction. ''Journal of Geophysical Research'' 97(C11):16,201-16,214. | Lai, R. J., S. R. Long, and N. E. Huang. 1989. Laboratory studies of wave-current interaction: Kinematics of the strong interaction. ''Journal of Geophysical Research'' 97(C11):16,201-16,214. | ||
Larson, M., and N. C. Kraus. 2002. ''NMLONG: Numerical model for simulating longshore current''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-02-22. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Larson, M., and N. C. Kraus. 2002. ''NMLONG: Numerical model for simulating longshore current''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-02-22. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Li, Y., and G. Dong. 1993. Breaking of irregular waves with opposing current. ''Marine Science Bulletin'' 12(5):1-8 (in Chinese). | Li, Y., and G. Dong. 1993. Breaking of irregular waves with opposing current. ''Marine Science Bulletin'' 12(5):1-8 (in Chinese). | ||
Lin, L., and Z. Demirbilek. 2005. Evaluation of two numerical wave models with inlet physical model. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 131(4):149-161, ASCE. | Lin, L., and Z. Demirbilek. 2005. Evaluation of two numerical wave models with inlet physical model. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 131(4):149-161, ASCE. | ||
Lin, L., and R.-Q. Lin. 2004a. Wave Breaking Function. ''Proceedings 8''<sup>''th</sup> ''''International Workshop on Wave Hindcasting and Prediction''. Oahu, Hawaii: North Shore. November 14-19. | Lin, L., and R.-Q. Lin. 2004a. Wave Breaking Function. ''Proceedings 8''<sup>''th</sup> ''''International Workshop on Wave Hindcasting and Prediction''. Oahu, Hawaii: North Shore. November 14-19. | ||
Lin, R.-Q., and L. Lin. 2004b. Wind Input Function. ''Proceedings 8''<sup>''th</sup> ''''International Workshop on Wave Hindcasting and Prediction''. North Shore, Oahu, Hawaii. November 14-19. | Lin, R.-Q., and L. Lin. 2004b. Wind Input Function. ''Proceedings 8''<sup>''th</sup> ''''International Workshop on Wave Hindcasting and Prediction''. North Shore, Oahu, Hawaii. November 14-19. | ||
Lin, L., R.-Q. Lin, and J. P.-Y. Maa. 2006a. Numerical simulation of wind wave field. ''9th International Workshop on Wave Hindcasting and Prediction''. Victoria, British Columbia, Canada, 24-29 September. | Lin, L., R.-Q. Lin, and J. P.-Y. Maa. 2006a. Numerical simulation of wind wave field. ''9th International Workshop on Wave Hindcasting and Prediction''. Victoria, British Columbia, Canada, 24-29 September. | ||
Lin, L., H. Mase, F. Yamada, and Z. Demirbilek. 2006b. ''Wave-action balance equation diffraction (WABED) model: Tests of wave diffraction and reflection at inlets''. Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-III-73. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Lin, L., H. Mase, F. Yamada, and Z. Demirbilek. 2006b. ''Wave-action balance equation diffraction (WABED) model: Tests of wave diffraction and reflection at inlets''. Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-III-73. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Longuet-Higgins, M. S., and R. W. Stewart. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. ''Journal of Fluid Mechanics'' 10(4):529-549. | Longuet-Higgins, M. S., and R. W. Stewart. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. ''Journal of Fluid Mechanics'' 10(4):529-549. | ||
Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, J. R. Koseff. 2005. Spectal wave dissipation over a barrier reef. ''Journal of Geophysical Research'' 110(C04001), doi:10.1029/2004JC002711, 16 p. | Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, J. R. Koseff. 2005. Spectal wave dissipation over a barrier reef. ''Journal of Geophysical Research'' 110(C04001), doi:10.1029/2004JC002711, 16 p. | ||
Macagno, E. O. 1953. Houle dans un can presentent un passage en charge. ''La Houille Blanche'' 9(1):10–37. | Macagno, E. O. 1953. Houle dans un can presentent un passage en charge. ''La Houille Blanche'' 9(1):10–37. | ||
Mase, H. 2001. Multidirectional random wave transformation model based on energy balance equation. ''Coastal Engineering Journal'' 43(4):317-337 JSCE. | Mase, H. 2001. Multidirectional random wave transformation model based on energy balance equation. ''Coastal Engineering Journal'' 43(4):317-337 JSCE. | ||
Mase, H. 1989. Random wave runup height on gentle slope. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 85(3):123-152, ASCE. | Mase, H. 1989. Random wave runup height on gentle slope. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 85(3):123-152, ASCE. | ||
Mase, H., H. Amamori, and T. Takayama. 2005a. Wave prediction model in wave-current coexisting field. ''Proceedings 12''<sup>''th</sup> ''''Canadian Coastal Conference'' (CD-ROM). | Mase, H., H. Amamori, and T. Takayama. 2005a. Wave prediction model in wave-current coexisting field. ''Proceedings 12''<sup>''th</sup> ''''Canadian Coastal Conference'' (CD-ROM). | ||
Mase, H., and Y. Iwagaki. 1984. Runup of random waves on gentle slopes. ''Proceedings 19''<sup>''th</sup> ''''International Conference on Coastal Engineering'', ASCE, 593-609. | Mase, H., and Y. Iwagaki. 1984. Runup of random waves on gentle slopes. ''Proceedings 19''<sup>''th</sup> ''''International Conference on Coastal Engineering'', ASCE, 593-609. | ||
Mase, H., and T. Kitano. 2000. Spectrum-based prediction model for random wave transformation over arbitrary bottom topography. ''Coastal Engineering Journal'' 42(1):111 151, JSCE. | Mase, H., and T. Kitano. 2000. Spectrum-based prediction model for random wave transformation over arbitrary bottom topography. ''Coastal Engineering Journal'' 42(1):111 151, JSCE. | ||
Mase, H., K. Oki, T. S. Hedges, and H. J. Li. 2005b. Extended energy-balance-equation wave model for multidirectional random wave transformation. ''Ocean Engineering'' 32(8-9):961-985. | Mase, H., K. Oki, T. S. Hedges, and H. J. Li. 2005b. Extended energy-balance-equation wave model for multidirectional random wave transformation. ''Ocean Engineering'' 32(8-9):961-985. | ||
Miche, M. 1951. Le pouvoir reflechissant des ouvrages maritimes exposes a 1'action de la houle. Annals des ''Ponts et Chau.ssess. ''121e Annee: 285-319 (translated by Lincoln and Chevron, University of California, Berkeley, Wave Research Laboratory, Series 3, Issue 363, June 1954). | Miche, M. 1951. Le pouvoir reflechissant des ouvrages maritimes exposes a 1'action de la houle. Annals des ''Ponts et Chau.ssess. ''121e Annee: 285-319 (translated by Lincoln and Chevron, University of California, Berkeley, Wave Research Laboratory, Series 3, Issue 363, June 1954). | ||
Mitsuyasu, H., and T. Honda. 1982. Wind-induced growth of water waves. ''Journal of Fluid Mechanics'' 123:425-442. | Mitsuyasu, H., and T. Honda. 1982. Wind-induced growth of water waves. ''Journal of Fluid Mechanics'' 123:425-442. | ||
Nwogu, O., and Z. Demirbilek. 2001. ''BOUSS-2D: A Boussinesq wave model for coastal regions and harbors''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-01-25. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Nwogu, O., and Z. Demirbilek. 2001. ''BOUSS-2D: A Boussinesq wave model for coastal regions and harbors''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-01-25. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Osborne P. D., and M. H. Davies. 2004. ''South jetty sediment processes study, Grays Harbor, Washington: Processes along Half Moon Bay''. PIE Technical Report. Edmonds, WA: Pacific International Engineering. | Osborne P. D., and M. H. Davies. 2004. ''South jetty sediment processes study, Grays Harbor, Washington: Processes along Half Moon Bay''. PIE Technical Report. Edmonds, WA: Pacific International Engineering. | ||
Osborne, P. D., and N. J. MacDonald. 2005. ''Wave energy evaluation of passenger only ferries in Rich Passage''. FTA Report FTA-WA-26-7007-2005. Washington, DC: Federal Transit Administration, U.S. Department of Transportation. | Osborne, P. D., and N. J. MacDonald. 2005. ''Wave energy evaluation of passenger only ferries in Rich Passage''. FTA Report FTA-WA-26-7007-2005. Washington, DC: Federal Transit Administration, U.S. Department of Transportation. | ||
Ostendorf, D. W., and O. S. Madsen. 1979. ''An analysis of longshore currents and associated sediment transport in the surf zone''. Report No. MITSG 79-13. Cambridge, MA: Massachusetts Institute of Technology, 169 p. | Ostendorf, D. W., and O. S. Madsen. 1979. ''An analysis of longshore currents and associated sediment transport in the surf zone''. Report No. MITSG 79-13. Cambridge, MA: Massachusetts Institute of Technology, 169 p. | ||
Phillips, O. M. 1957. On the generation of waves by turbulent wind. ''Journal of Fluid Mechanics'' 2:417-445. | Phillips, O. M. 1957. On the generation of waves by turbulent wind. ''Journal of Fluid Mechanics'' 2:417-445. | ||
Raichlen, F. 1993. Wave propagating on an adverse jet. ''Proceedings 2''<sup>''nd</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 93'', ASCE, 657-670. | Raichlen, F. 1993. Wave propagating on an adverse jet. ''Proceedings 2''<sup>''nd</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 93'', ASCE, 657-670. | ||
Ris, R. C., and L. H. Holthuijsen. 1996. Spectral modeling of current induced wave-blocking. ''Proceedings 25''<sup>''th</sup> ''''Coastal Engineering Conference'', ASCE, 1,247-1,254. | Ris, R. C., and L. H. Holthuijsen. 1996. Spectral modeling of current induced wave-blocking. ''Proceedings 25''<sup>''th</sup> ''''Coastal Engineering Conference'', ASCE, 1,247-1,254. | ||
Rivero, F. J., A. S. Arcilla, and E. Carci. 1997. An analysis of diffraction in spectral wave models. ''Proceedings 3''<sup>''rd</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 97'', ASCE, 431–445. | Rivero, F. J., A. S. Arcilla, and E. Carci. 1997. An analysis of diffraction in spectral wave models. ''Proceedings 3''<sup>''rd</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 97'', ASCE, 431–445. | ||
Sakai, S., N. Kobayashi, and K. Koike. 1989. Wave breaking criterion with opposing current on sloping bottom: an extension of Goda's breaker index. ''Annual Journal of Coastal Engineering'' 36:56-59, JSCE (in Japanese). | Sakai, S., N. Kobayashi, and K. Koike. 1989. Wave breaking criterion with opposing current on sloping bottom: an extension of Goda's breaker index. ''Annual Journal of Coastal Engineering'' 36:56-59, JSCE (in Japanese). | ||
Seabergh, W. C., W. R. Curtis, L. J. Thomas, and K. K. Hathaway. 2002. ''Physical model study of wave diffraction-refraction at an idealized inlet''. Coastal Inlet Research Program Technical Report ERDC/CHL-TR-02-27. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Seabergh, W. C., W. R. Curtis, L. J. Thomas, and K. K. Hathaway. 2002. ''Physical model study of wave diffraction-refraction at an idealized inlet''. Coastal Inlet Research Program Technical Report ERDC/CHL-TR-02-27. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Seabergh, W. C., L. Lin, and Z. Demirbilek. 2005. ''Laboratory study of hydrodynamics near absorbing and fully reflecting jetties''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-05-8. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Seabergh, W. C., L. Lin, and Z. Demirbilek. 2005. ''Laboratory study of hydrodynamics near absorbing and fully reflecting jetties''. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-05-8. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
''Shore protection manual''. 1984. 4<sup>th</sup> ed., 2 Vol, U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office, Washington, DC. | ''Shore protection manual''. 1984. 4<sup>th</sup> ed., 2 Vol, U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office, Washington, DC. | ||
Smith, J. M. 2001a. Breaking in a spectral wave model. ''Proceedings 4''<sup>''th</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 01'', ASCE, 1,022-1,031. | Smith, J. M. 2001a. Breaking in a spectral wave model. ''Proceedings 4''<sup>''th</sup> ''''International Symposium of Ocean Wave Measurement and Analysis, Waves 01'', ASCE, 1,022-1,031. | ||
Smith, J. M. 2001b. ''Modeling nearshore transformation with STWAVE''. Coastal and Hydraulics Laboratory Special Report ERDC/CHL SR-01-01. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | Smith, J. M. 2001b. ''Modeling nearshore transformation with STWAVE''. Coastal and Hydraulics Laboratory Special Report ERDC/CHL SR-01-01. Vicksburg, MS: U.S. Army Engineer Research and Development Center. | ||
Smith, J. M., D. T. Resio, and A. Zundel. 1999. ''STWAVE: Steady-state spectral wave model, Report 1: User's manual for STWAVE Version 2.0''. Coastal and Hydraulics Laboratory Instruction Report CHL-99-1. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | Smith, J. M., D. T. Resio, and A. Zundel. 1999. ''STWAVE: Steady-state spectral wave model, Report 1: User's manual for STWAVE Version 2.0''. Coastal and Hydraulics Laboratory Instruction Report CHL-99-1. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | ||
Smith, J. M., W. C. Seabergh, G. S. Harkins, and M. J. Briggs. 1998. ''Wave breaking on a current at an idealized inlet''. Coastal and Hydraulics Laboratory Technical Report CHL-98-31. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | Smith, J. M., W. C. Seabergh, G. S. Harkins, and M. J. Briggs. 1998. ''Wave breaking on a current at an idealized inlet''. Coastal and Hydraulics Laboratory Technical Report CHL-98-31. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station. | ||
Suh, K. D., Y. Y. Kim, and D. Y. Lee. 1994. Equilibrium-range spectrum of waves propagating on currents. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 120(5):434-450, ASCE. | Suh, K. D., Y. Y. Kim, and D. Y. Lee. 1994. Equilibrium-range spectrum of waves propagating on currents. ''Journal of Waterway, Port, Coastal, and Ocean Engineering'' 120(5):434-450, ASCE. | ||
Takayama, T., Ikeda, N., Hiraishi, T. 1991. ''Wave transformation calculation considering wave breaking and reflection''. Technical Report, Port Harbor Research Institute, Japan 30 (1): 21 67. | Takayama, T., Ikeda, N., Hiraishi, T. 1991. ''Wave transformation calculation considering wave breaking and reflection''. Technical Report, Port Harbor Research Institute, Japan 30 (1): 21 67. | ||
Tayfun, M. A., R. A. Dalrymple, and C. Y. Yang. 1976. Random wave-current interaction in water of varying depth. ''Ocean Engineering'', Vol.3:403-420. | Tayfun, M. A., R. A. Dalrymple, and C. Y. Yang. 1976. Random wave-current interaction in water of varying depth. ''Ocean Engineering'', Vol.3:403-420. | ||
Thornton, E. B., and R. T. Guza. 1983. Transformation of wave height distribution. ''Journal of Geophysical Research'' 88(C10):5,925-5,938. | Thornton, E. B., and R. T. Guza. 1983. Transformation of wave height distribution. ''Journal of Geophysical Research'' 88(C10):5,925-5,938. | ||
Visser, P. J. 1991. Laboratory measurements of uniform longshore currents''. Coastal Engineering ''15:563-593. | Visser, P. J. 1991. Laboratory measurements of uniform longshore currents''. Coastal Engineering ''15:563-593. | ||
Whitham, G. B. 1974. ''Linear and nonlinear waves''. New York, NY: John Wiley. | Whitham, G. B. 1974. ''Linear and nonlinear waves''. New York, NY: John Wiley. | ||
Wiegel, R. L. 1962. Diffraction of waves by a semi-infinite breakwater. ''Journal of the Hydraulics Division'' 88(HY1):27-44. | Wiegel, R. L. 1962. Diffraction of waves by a semi-infinite breakwater. ''Journal of the Hydraulics Division'' 88(HY1):27-44. | ||
Yu, Y. Y. 1950. Breaking of waves by opposing current. ''Transaction of American Geophysical Union'' 33(1):39-41. | Yu, Y. Y. 1950. Breaking of waves by opposing current. ''Transaction of American Geophysical Union'' 33(1):39-41. | ||
Zhao, L., V. G. Panchang, W. Chen, Z. Demirbilek, and N. Chhabbra. 2001. Simulation of breaking effects in a two dimensional harbor wave prediction model. ''Coastal Engineering'' 42:359-373. | Zhao, L., V. G. Panchang, W. Chen, Z. Demirbilek, and N. Chhabbra. 2001. Simulation of breaking effects in a two dimensional harbor wave prediction model. ''Coastal Engineering'' 42:359-373. | ||
Zheng, J., H. Mase, Z. Demirbilek, and L. Lin. 2008. Implementation and evaluation of alternative wave breaking formulas in a coastal spectral wave model. ''Ocean Engineering'' (in press). | Zheng, J., H. Mase, Z. Demirbilek, and L. Lin. 2008. Implementation and evaluation of alternative wave breaking formulas in a coastal spectral wave model. ''Ocean Engineering'' (in press). | ||
Zubier, K., V. G. Panchang, and Z. Demirbilek. 2003. Simulation of waves at Duck (North Carolina) using two numerical models. ''Coastal Engineering Journal'' 45(3):439-469. | Zubier, K., V. G. Panchang, and Z. Demirbilek. 2003. Simulation of waves at Duck (North Carolina) using two numerical models. ''Coastal Engineering Journal'' 45(3):439-469. | ||
Zundel, A. 2006. ''Surface-water modeling system reference manual – Version 9.2''. Provo, UT: Brigham Young University Environmental Modeling Research Laboratory. | Zundel, A. 2006. ''Surface-water modeling system reference manual – Version 9.2''. Provo, UT: Brigham Young University Environmental Modeling Research Laboratory. | ||
==Appendix A: CMS-Wave Input File Formats== | |||
There are ten input files associated with CMS-Wave. Four of them are required: | |||
* simulation (*.sim) | |||
* options (*.std) | |||
* depth (*.dep) | |||
* energy (*.eng) | |||
and six others are optional: | |||
* water level (*.eta) | |||
* current (*.cur) | |||
* structure (*.struct) | |||
* bottom friction coefficient file (friction.dat) | |||
* forward reflection coefficient file (forward.dat) | |||
* backward reflection coefficient file (backward.dat) | |||
File formats are described as follows. | |||
'''Simulation file: *.sim: '''A sample simulation file is shown below: | |||
{|border="0" cellspacing="2" width="100%" | |||
|CMS-Wave | |||
|0.0000 | |||
|0.0000 | |||
|0.0000<br>DEP | |||
|SlopeBeach.dep<br>OPTS | |||
|SlopeBeach.std<br>CURR | |||
|SlopeBeach.cur<br>ETA | |||
|SlopeBeach.eta<br>SPEC | |||
|SlopeBeach.eng<br>WAVE | |||
|SlopeBeach.wav<br>OBSE | |||
|SlopeBeach.obs<br>NEST | |||
|SlopeBeach.nst<br>BREAK | |||
|SlopeBeach.brk<br>SPGEN | |||
|SlopeBeach.txt<br>STRUCT | |||
|SlopeBeach.struct<br>RADS | |||
|SlopeBeach.rad | |||
|} | |||
The first line contains the keyword "CMS-Wave" to indicate the Wave simulation is under CMS-Wave. This line of the file also contains the world origin (x, y) and rotation (measured CCW from east to the local I or x-axis) of the grid. SlopeBeach.nst is the optional output spectrum file for input to a nested child grid simulation. | |||
'''Settings file: *.std: '''An example settings file is shown below: | |||
1 0 2 1 3 0 0 1 1 0 1.00 0.005 0.500 0.300 2 | |||
1 3 | |||
2 2 | |||
3 3 | |||
The first line lists of 15 numbers, each number in the setting file defines a setting or option parameter for the run. The first six parameters (iprp, icur, ibrk, irs, kout, ibnd) are the same as defined for STWAVE Version 5.4. The next nine parameters (iwet, ibf, iark, iarkr, akap, bf, ark, arkr, iwvbk) are provided for special features of CMS-Wave. For example, the first number (iprp = 1) specified that a wave spectrum is provided at the offshore boundary and the wind effect is not calculated even it is provided in the spectrum input file (*.eng). The next three lines in the example settings file list the (x, y) indices for three special output locations (kout = 3). | |||
CMS-Wave can also read the *.std in a card format. A sample card format file, containing the same info in the above example, is given below: | |||
{|border="0" cellspacing="2" width="100%" | |||
|0 | |||
|!icur - 0: no action, 1: read current input file | |||
|- | |||
|2 | |||
|!ibrk - 0: no action, 1: output breaker index, 2: save wave dissipation file | |||
|- | |||
|1 | |||
|!irs - 0: no action, 1: save wave radiation file | |||
|- | |||
|3 | |||
|!kout - 0: no action, n: save special n-location file | |||
|- | |||
|0 | |||
|!ibnd - 0: no action, 1: linear interpolation of boundary wave input, 2: morphic | |||
|- | |||
|0 | |||
|!iwet - 0: include water level input, 1: neglect water level input | |||
|- | |||
|1 | |||
|!iprp - 0: include wind-wave generation, 1: wave propagation only | |||
|- | |||
|1 | |||
|!ibf - 0: neglect bottom friction, 1: const ''C''<sub>''f''</sub>, 2: varied ''C''<sub>''f''</sub>, 3: const ''n'', 4: varied ''n'' | |||
|} | |||
0.005 !bf – a constant global bottom friction coef | |||
{|border="0" cellspacing="2" width="100%" | |||
|2 | |||
|!iwvbk – wave breaking formula 0: Extended Goda, 1: Extended Miche, 2: B&J 3:K&C | |||
|- | |||
|1 | |||
|!iark - 0: no forward reflection, 1: with forward reflection | |||
|- | |||
|0.5 | |||
|!ark – a constant global forward reflection coef (between 0 and 1) | |||
|- | |||
|0 | |||
|!iarkr - 0: no backward reflection, 1: with backward reflection | |||
|- | |||
|0.3 | |||
|!arkr –a constant global backward reflection coef (between 0 and 1) | |||
|- | |||
|1. | |||
|!akap – a constant diffraction intensity (between 0 and 4) | |||
|- | |||
| | |||
|1 3 | |||
|- | |||
| | |||
|2 2 | |||
|- | |||
| | |||
|3 3 | |||
|} | |||
Each card describes a single setting parameter. The list of cards is not required in sequential orders. Blank lines between cards are permitted. If any parameter is omitted, a default value is then applied. | |||
'''Depth file: *.dep: '''A sample depth file is shown: | |||
{|border="0" cellspacing="2" width="100%" | |||
|3 | |||
|6 | |||
|100.00 | |||
|200.00<br>9.93125 | |||
|9.79375 | |||
|9.65625 | |||
|7.51875 | |||
|3.38125 | |||
|1.24375<br>8.55625 | |||
|7.41875 | |||
|5.28125 | |||
|3.14375 | |||
|1.00625 | |||
|<nowiki>-</nowiki>0.86875<br>8.18125 | |||
|7.04375 | |||
|4.90625 | |||
|2.76875 | |||
|<nowiki>-</nowiki>0.63125 | |||
|<nowiki>-</nowiki>1.49375 | |||
|} | |||
The first line contains the number of rows (=3), columns and (=6) the size of cells in the x and y directions (100 and 200 m in the example). Depth values are then specified for each cell in the row-to-row order (from top row to bottom row in the model domain). | |||
'''Energy file: *.eng: '''A portion of a sample energy file is shown: | |||
{|border="0" cellspacing="2" width="100%" | |||
|30 | |||
|35<br>0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110<br>0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190<br>0.200 0.210 0.220 0.230 0.240 0.250 0.260 0.270<br>0.280 0.290 0.300 0.310 0.320 0.330<br>08010100 5.00 10.00 0.130 0.500<br>0.00000 | |||
|0.00000 | |||
|0.00000 | |||
|0.00000 | |||
|0.00000 | |||
|0.00000<br>0.00000 | |||
|0.00000 | |||
|0.00000 | |||
|0.00000 | |||
|0.00000 | |||
|0.00000<br>0.00000 | |||
|0.00000 | |||
|0.00000 | |||
|0.02000 | |||
|0.13000 | |||
|0.25000 | |||
|} | |||
... | |||
The first line defines the dimension of the spectral grid (number of frequency bins and number of direction bins in a half plane). The next several lines define the frequency values for the grid. Following the grid specification, the file includes a definition line for each directional spectrum consisting of an identifier (08010100 in the example), wind speed (m/sec) and wind direction (deg) for this spectrum (5 m/sec and 10 deg in this sample case), a spectral peak frequency (0.13 Hz in the example), a tidal offset (0.5 m above the model mean water level), and then an energy density (m<sup>2 </sup>sec/radian) for each cell in the spectral grid. | |||
Line 178: | Line 446: | ||
|[[TR-08-13|Table of Contents]] | |[[TR-08-13|Table of Contents]] | ||
|} | |} | ||
[[category:Publication]] |
Latest revision as of 18:32, 7 October 2009
References
Ahrens, J. P., and M. S. Heimbaugh. 1988. Approximate upper limit of irregular wave runup on riprap. Coastal Engineering Research Center Technical Report CERC-88-5. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
Ahrens, J. P., and M. F. Titus. 1981. Laboratory data report: irregular wave runup on plane smooth slopes. Coastal Engineering Research Center unpublished Laboratory Report. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
Battjes, J. A. 1972. Set-up due to irregular waves. Proceedings 13th 'International Conference on Coastal Engineering, ASCE, 1993-2004.
Battjes, J. A., and J. Janssen. 1978. Energy loss and set-up due to breaking of random waves. Proceedings 16th 'International Conference Coastal Engineering, ASCE, 569-587.
Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research 104(C4):7,649-7,666.
Bouws, E., and G. J. Komen. 1983. On the balance between growth and dissipation in extreme, depth limited wind-sea in the southern North Sea. Journal of Physical Oceanography 13:1,653-1,658.
Bretherton, F. P., and C. J. R. Garrett. 1968. Wave trains in inhomogeneous moving media. Proceedings Royal Society of London A(302):529-554.
Briggs, M. J., and P.L.-F. Liu. 1993. Experimental study on monochromatic wave-ebb current interaction. Proceedings 2nd 'International Symposium of Ocean Wave Measurement and Analysis, Waves 93, ASCE, 474-488.
Briggs, M. J., and Z. Demirbilek. 1996. Wave-current interaction in inlets. Proceedings 25th Coastal Engineering Conference, ASCE, 1,219-1,232.
Buttolph, A. M., C. W. Reed, N. C. Kraus, N. Ono, M. Larson, B. Camenen, H. Hanson, T. Wamsley, and A. Zundel. 2006. Two-dimensional depth-averaged circulation model CMS-M2D: Version 3.0: Report 2, sediment transport and morphology change. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-06-9. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Chawla A., and J. T. Kirby. 2002. Monochromatic and random wave breaking at blocking points. Journal of Geophysical Research 107(C7), 10.1029/2001JC001042.
Chen, W., V. G. Panchang, and Z. Demirbilek. 2005. On the modeling of wave-current interaction using the elliptic mild-slope wave equation. Ocean Engineering 32(17-18):2,135-2,164.
Collins, J. I. 1972. Prediction of shallow water spectra. Journal of Geophysical Research 77(15):2693-2707.
Dally, W. R., R. G. Dean, and R. A. Dalrymple. 1985. Wave height variation across beaches of arbitrary profile. Journal of Geophysical Research 90(C6):11,917-11,927.
Dean, R. G. 1977. Equilibrium beach profiles: U.S. Atlantic and Gulf Coasts. Ocean Engineering Technical Report No. 12. Newark, DE: Department of Civil Engineering and College of Marine Studies, University of Delaware.
Dean, R. G., and R. A. Dalrymple. 1984. Water wave mechanics for engineers and scientitists. Englewood Cliffs, NJ: Prentice-Hall, Inc.
Demirbilek, Z., L. Lin, and O.G. Nwogu. 2008. Wave modeling for jetty rehabilitation at the Mouth of the Columbia River, Washington/Oregon, USA. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-08-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Demirbilek, Z., L. Lin, and A. Zundel. 2007. WABED model in the SMS: Part 2. Graphical interface. Coastal and Hydraulics Laboratory Engineering Technical Note ERDC/CHL CHETN-I-74. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Demirbilek, Z., and V. Panchang. 1998. CGWAVE: A coastal surface-water wave model of the mild-slope equation. Coastal and Hydraulics Laboratory Technical Report CHL-98-26. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
Goda, Y. 1970. A synthesis of breaker indices. Transactions of the Japan Society of Civil Engineers 13:227-230 (in Japanese).
Goda, Y. 1985. Random seas and design of maritime structures. Tokyo: University of Tokyo Press.
Goda, Y. 2006. Examination of the influence of several factors on longshore current computation with random waves. Coastal Engineering 53(2-3):157-170.
Guza, R. T., and E. B. Thornton. 1981. Wave set-up on a natural beach. Journal of Geophysical Research 86(C5):4,133-4,137.
Hardy, T. A. 1993. The attenuation of spectral transformation of wind waves on a coral reef. Queendsland, Australia: James Cook University of North Queensland, Townsville, 336 p.
Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerbrug, P. Muller, D. J. Olbers, K. Richter, W. Sell, and H. Walden. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydrographische Zeitschrift A80(12), 95 p.
Headquarters, U.S. Army Corps of Engineers. 2002. Coastal Engineering Manual. EM 1110-2-1100. Washington, DC (in 6 volumes).
Hearn, C. J. 1999. Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. Journal of Geophysical Research 104(C12):30,007-30,019.
Hedges, T. S., K. Anastasiou, and D. Gabriel. 1985. Interaction of random waves and currents. Journal of Waterway, Port, Coastal, and Ocean Engineering 111(2):275-288, ASCE.
Holthuijsen, L. H., A. Herman, and N. Booij. 2004. Phase-decoupled refraction-diffraction for spectral wave models. Journal of Coastal Engineering 49:291-305.
Huang, N. E., D. T. Chen, C. C. Tung and J. R. Smith. 1972. Interactions between steady non-uniform currents and gravity waves with application for current instruments. Journal of Physical Oceanography 2:420 431.
Iwagaki, Y., T. Asano, Y. Yamanaka, and F. Nagai. 1980. Wave breaking due to currents. Annual Journal of Coastal Engineering 27:30-34, JSCE (in Japanese).
Jenkins, A. D., and O. M. Phillips. 2001. A simple formula for nonlinear wave-wave interaction. Journal of Offshore and Polar Engineering 11(2):81-86.
Johnson, J. W. 1952. Generalized wave diffraction diagrams. Proceedings 2nd 'Conference on Coastal Engineering, ASCE.
Jonsson, I. G. 1990. Wave-current interactions. Chapter 7, The Sea. B. Le Mehaute and D. Hanes (ed.). New York, NY: John Wiley and Sons, 65-120.
Komar, P. D. 1998. Beach processes and sedimentation. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, Inc.
Komen, G. J., S. Hasselrnann, and K. Hasselmam. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography 14:1,271-1,285.
Kraus, N. C., L. Lin, B. K. Batten, and G. L. Brown. 2006. Matagorda Ship Channel, Texas: jetty stability study. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-06-7. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Lai, R. J., S. R. Long, and N. E. Huang. 1989. Laboratory studies of wave-current interaction: Kinematics of the strong interaction. Journal of Geophysical Research 97(C11):16,201-16,214.
Larson, M., and N. C. Kraus. 2002. NMLONG: Numerical model for simulating longshore current. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-02-22. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Li, Y., and G. Dong. 1993. Breaking of irregular waves with opposing current. Marine Science Bulletin 12(5):1-8 (in Chinese).
Lin, L., and Z. Demirbilek. 2005. Evaluation of two numerical wave models with inlet physical model. Journal of Waterway, Port, Coastal, and Ocean Engineering 131(4):149-161, ASCE.
Lin, L., and R.-Q. Lin. 2004a. Wave Breaking Function. Proceedings 8th 'International Workshop on Wave Hindcasting and Prediction. Oahu, Hawaii: North Shore. November 14-19.
Lin, R.-Q., and L. Lin. 2004b. Wind Input Function. Proceedings 8th 'International Workshop on Wave Hindcasting and Prediction. North Shore, Oahu, Hawaii. November 14-19.
Lin, L., R.-Q. Lin, and J. P.-Y. Maa. 2006a. Numerical simulation of wind wave field. 9th International Workshop on Wave Hindcasting and Prediction. Victoria, British Columbia, Canada, 24-29 September.
Lin, L., H. Mase, F. Yamada, and Z. Demirbilek. 2006b. Wave-action balance equation diffraction (WABED) model: Tests of wave diffraction and reflection at inlets. Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-III-73. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Longuet-Higgins, M. S., and R. W. Stewart. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics 10(4):529-549.
Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, J. R. Koseff. 2005. Spectal wave dissipation over a barrier reef. Journal of Geophysical Research 110(C04001), doi:10.1029/2004JC002711, 16 p.
Macagno, E. O. 1953. Houle dans un can presentent un passage en charge. La Houille Blanche 9(1):10–37.
Mase, H. 2001. Multidirectional random wave transformation model based on energy balance equation. Coastal Engineering Journal 43(4):317-337 JSCE.
Mase, H. 1989. Random wave runup height on gentle slope. Journal of Waterway, Port, Coastal, and Ocean Engineering 85(3):123-152, ASCE.
Mase, H., H. Amamori, and T. Takayama. 2005a. Wave prediction model in wave-current coexisting field. Proceedings 12th 'Canadian Coastal Conference (CD-ROM).
Mase, H., and Y. Iwagaki. 1984. Runup of random waves on gentle slopes. Proceedings 19th 'International Conference on Coastal Engineering, ASCE, 593-609.
Mase, H., and T. Kitano. 2000. Spectrum-based prediction model for random wave transformation over arbitrary bottom topography. Coastal Engineering Journal 42(1):111 151, JSCE.
Mase, H., K. Oki, T. S. Hedges, and H. J. Li. 2005b. Extended energy-balance-equation wave model for multidirectional random wave transformation. Ocean Engineering 32(8-9):961-985.
Miche, M. 1951. Le pouvoir reflechissant des ouvrages maritimes exposes a 1'action de la houle. Annals des Ponts et Chau.ssess. 121e Annee: 285-319 (translated by Lincoln and Chevron, University of California, Berkeley, Wave Research Laboratory, Series 3, Issue 363, June 1954).
Mitsuyasu, H., and T. Honda. 1982. Wind-induced growth of water waves. Journal of Fluid Mechanics 123:425-442.
Nwogu, O., and Z. Demirbilek. 2001. BOUSS-2D: A Boussinesq wave model for coastal regions and harbors. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-01-25. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Osborne P. D., and M. H. Davies. 2004. South jetty sediment processes study, Grays Harbor, Washington: Processes along Half Moon Bay. PIE Technical Report. Edmonds, WA: Pacific International Engineering.
Osborne, P. D., and N. J. MacDonald. 2005. Wave energy evaluation of passenger only ferries in Rich Passage. FTA Report FTA-WA-26-7007-2005. Washington, DC: Federal Transit Administration, U.S. Department of Transportation.
Ostendorf, D. W., and O. S. Madsen. 1979. An analysis of longshore currents and associated sediment transport in the surf zone. Report No. MITSG 79-13. Cambridge, MA: Massachusetts Institute of Technology, 169 p.
Phillips, O. M. 1957. On the generation of waves by turbulent wind. Journal of Fluid Mechanics 2:417-445.
Raichlen, F. 1993. Wave propagating on an adverse jet. Proceedings 2nd 'International Symposium of Ocean Wave Measurement and Analysis, Waves 93, ASCE, 657-670.
Ris, R. C., and L. H. Holthuijsen. 1996. Spectral modeling of current induced wave-blocking. Proceedings 25th 'Coastal Engineering Conference, ASCE, 1,247-1,254.
Rivero, F. J., A. S. Arcilla, and E. Carci. 1997. An analysis of diffraction in spectral wave models. Proceedings 3rd 'International Symposium of Ocean Wave Measurement and Analysis, Waves 97, ASCE, 431–445.
Sakai, S., N. Kobayashi, and K. Koike. 1989. Wave breaking criterion with opposing current on sloping bottom: an extension of Goda's breaker index. Annual Journal of Coastal Engineering 36:56-59, JSCE (in Japanese).
Seabergh, W. C., W. R. Curtis, L. J. Thomas, and K. K. Hathaway. 2002. Physical model study of wave diffraction-refraction at an idealized inlet. Coastal Inlet Research Program Technical Report ERDC/CHL-TR-02-27. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Seabergh, W. C., L. Lin, and Z. Demirbilek. 2005. Laboratory study of hydrodynamics near absorbing and fully reflecting jetties. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-05-8. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Shore protection manual. 1984. 4th ed., 2 Vol, U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office, Washington, DC.
Smith, J. M. 2001a. Breaking in a spectral wave model. Proceedings 4th 'International Symposium of Ocean Wave Measurement and Analysis, Waves 01, ASCE, 1,022-1,031.
Smith, J. M. 2001b. Modeling nearshore transformation with STWAVE. Coastal and Hydraulics Laboratory Special Report ERDC/CHL SR-01-01. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Smith, J. M., D. T. Resio, and A. Zundel. 1999. STWAVE: Steady-state spectral wave model, Report 1: User's manual for STWAVE Version 2.0. Coastal and Hydraulics Laboratory Instruction Report CHL-99-1. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
Smith, J. M., W. C. Seabergh, G. S. Harkins, and M. J. Briggs. 1998. Wave breaking on a current at an idealized inlet. Coastal and Hydraulics Laboratory Technical Report CHL-98-31. Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.
Suh, K. D., Y. Y. Kim, and D. Y. Lee. 1994. Equilibrium-range spectrum of waves propagating on currents. Journal of Waterway, Port, Coastal, and Ocean Engineering 120(5):434-450, ASCE.
Takayama, T., Ikeda, N., Hiraishi, T. 1991. Wave transformation calculation considering wave breaking and reflection. Technical Report, Port Harbor Research Institute, Japan 30 (1): 21 67.
Tayfun, M. A., R. A. Dalrymple, and C. Y. Yang. 1976. Random wave-current interaction in water of varying depth. Ocean Engineering, Vol.3:403-420.
Thornton, E. B., and R. T. Guza. 1983. Transformation of wave height distribution. Journal of Geophysical Research 88(C10):5,925-5,938.
Visser, P. J. 1991. Laboratory measurements of uniform longshore currents. Coastal Engineering 15:563-593.
Whitham, G. B. 1974. Linear and nonlinear waves. New York, NY: John Wiley.
Wiegel, R. L. 1962. Diffraction of waves by a semi-infinite breakwater. Journal of the Hydraulics Division 88(HY1):27-44.
Yu, Y. Y. 1950. Breaking of waves by opposing current. Transaction of American Geophysical Union 33(1):39-41.
Zhao, L., V. G. Panchang, W. Chen, Z. Demirbilek, and N. Chhabbra. 2001. Simulation of breaking effects in a two dimensional harbor wave prediction model. Coastal Engineering 42:359-373.
Zheng, J., H. Mase, Z. Demirbilek, and L. Lin. 2008. Implementation and evaluation of alternative wave breaking formulas in a coastal spectral wave model. Ocean Engineering (in press).
Zubier, K., V. G. Panchang, and Z. Demirbilek. 2003. Simulation of waves at Duck (North Carolina) using two numerical models. Coastal Engineering Journal 45(3):439-469.
Zundel, A. 2006. Surface-water modeling system reference manual – Version 9.2. Provo, UT: Brigham Young University Environmental Modeling Research Laboratory.
Appendix A: CMS-Wave Input File Formats
There are ten input files associated with CMS-Wave. Four of them are required:
- simulation (*.sim)
- options (*.std)
- depth (*.dep)
- energy (*.eng)
and six others are optional:
- water level (*.eta)
- current (*.cur)
- structure (*.struct)
- bottom friction coefficient file (friction.dat)
- forward reflection coefficient file (forward.dat)
- backward reflection coefficient file (backward.dat)
File formats are described as follows.
Simulation file: *.sim: A sample simulation file is shown below:
CMS-Wave | 0.0000 | 0.0000 | 0.0000 DEP |
SlopeBeach.dep OPTS |
SlopeBeach.std CURR |
SlopeBeach.cur ETA |
SlopeBeach.eta SPEC |
SlopeBeach.eng WAVE |
SlopeBeach.wav OBSE |
SlopeBeach.obs NEST |
SlopeBeach.nst BREAK |
SlopeBeach.brk SPGEN |
SlopeBeach.txt STRUCT |
SlopeBeach.struct RADS |
SlopeBeach.rad |
The first line contains the keyword "CMS-Wave" to indicate the Wave simulation is under CMS-Wave. This line of the file also contains the world origin (x, y) and rotation (measured CCW from east to the local I or x-axis) of the grid. SlopeBeach.nst is the optional output spectrum file for input to a nested child grid simulation.
Settings file: *.std: An example settings file is shown below:
1 0 2 1 3 0 0 1 1 0 1.00 0.005 0.500 0.300 2
1 3
2 2
3 3
The first line lists of 15 numbers, each number in the setting file defines a setting or option parameter for the run. The first six parameters (iprp, icur, ibrk, irs, kout, ibnd) are the same as defined for STWAVE Version 5.4. The next nine parameters (iwet, ibf, iark, iarkr, akap, bf, ark, arkr, iwvbk) are provided for special features of CMS-Wave. For example, the first number (iprp = 1) specified that a wave spectrum is provided at the offshore boundary and the wind effect is not calculated even it is provided in the spectrum input file (*.eng). The next three lines in the example settings file list the (x, y) indices for three special output locations (kout = 3).
CMS-Wave can also read the *.std in a card format. A sample card format file, containing the same info in the above example, is given below:
0 | !icur - 0: no action, 1: read current input file |
2 | !ibrk - 0: no action, 1: output breaker index, 2: save wave dissipation file |
1 | !irs - 0: no action, 1: save wave radiation file |
3 | !kout - 0: no action, n: save special n-location file |
0 | !ibnd - 0: no action, 1: linear interpolation of boundary wave input, 2: morphic |
0 | !iwet - 0: include water level input, 1: neglect water level input |
1 | !iprp - 0: include wind-wave generation, 1: wave propagation only |
1 | !ibf - 0: neglect bottom friction, 1: const Cf, 2: varied Cf, 3: const n, 4: varied n |
0.005 !bf – a constant global bottom friction coef
2 | !iwvbk – wave breaking formula 0: Extended Goda, 1: Extended Miche, 2: B&J 3:K&C |
1 | !iark - 0: no forward reflection, 1: with forward reflection |
0.5 | !ark – a constant global forward reflection coef (between 0 and 1) |
0 | !iarkr - 0: no backward reflection, 1: with backward reflection |
0.3 | !arkr –a constant global backward reflection coef (between 0 and 1) |
1. | !akap – a constant diffraction intensity (between 0 and 4) |
1 3 | |
2 2 | |
3 3 |
Each card describes a single setting parameter. The list of cards is not required in sequential orders. Blank lines between cards are permitted. If any parameter is omitted, a default value is then applied.
Depth file: *.dep: A sample depth file is shown:
3 | 6 | 100.00 | 200.00 9.93125 |
9.79375 | 9.65625 | 7.51875 | 3.38125 | 1.24375 8.55625 |
7.41875 | 5.28125 | 3.14375 | 1.00625 | -0.86875 8.18125 |
7.04375 | 4.90625 | 2.76875 | -0.63125 | -1.49375 |
The first line contains the number of rows (=3), columns and (=6) the size of cells in the x and y directions (100 and 200 m in the example). Depth values are then specified for each cell in the row-to-row order (from top row to bottom row in the model domain).
Energy file: *.eng: A portion of a sample energy file is shown:
30 | 35 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200 0.210 0.220 0.230 0.240 0.250 0.260 0.270 0.280 0.290 0.300 0.310 0.320 0.330 08010100 5.00 10.00 0.130 0.500 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 0.00000 |
0.00000 | 0.00000 | 0.02000 | 0.13000 | 0.25000 |
...
The first line defines the dimension of the spectral grid (number of frequency bins and number of direction bins in a half plane). The next several lines define the frequency values for the grid. Following the grid specification, the file includes a definition line for each directional spectrum consisting of an identifier (08010100 in the example), wind speed (m/sec) and wind direction (deg) for this spectrum (5 m/sec and 10 deg in this sample case), a spectral peak frequency (0.13 Hz in the example), a tidal offset (0.5 m above the model mean water level), and then an energy density (m2 sec/radian) for each cell in the spectral grid.
Table of Contents |