CMS-Flow:Transport Formula: Difference between revisions
(Created page with "__NOTOC__ ==Lund-CIRP== Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended load under combined waves and currents. ...") |
m (→Watanabe) |
||
(46 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
=Lund-CIRP= | |||
Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended load under combined waves and currents. These are refered to as the Lund-CIRP transport formulas. The general transport formulas can be used for both symmetric and asymmetric waves but for simplicity the waves are assumed to be symmetric in CMS. The bed load transport rate including the stirring effect of waves is given by | |||
Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended load under combined waves and currents. | {{Equation|<math> | ||
\frac{q_{b}}{\sqrt{(s-1) g d_{50}^3}} = a_c \sqrt{\theta_c} \theta_{cw,m}\exp{ \biggl ( -b_c \frac{\theta_{cr}}{\theta_{cw}}} \biggr ) | |||
</math>|1}} | |||
where <math>q_{b}</math> is in m^2/s, <math>d_{50}</math> is the median grain size, <math>s</math> is the sediment specific gravity or relative density, <math>g</math> is gravitational constant, <math>\theta_{cw,m}</math> and <math>\theta_{cw}</math> are the mean and maximum Shields parameters due to waves and currents respectively, <math>\theta_{c}</math>, <math>\theta_{cr}</math> is the critical Shields parameter due to currents, <math>a_c</math> and <math>b_c</math> are empirical coefficients. | |||
The current-related suspended load transport with wave stirring is given by | The current-related suspended load transport with wave stirring is given by | ||
{{Equation|<math> \frac{q_s}{\sqrt{ (s-1) g | {{Equation|<math> | ||
\frac{q_s}{\sqrt{ (s-1) g d_{50}^3 }} = U c_R \frac{\varepsilon}{\omega_s} \biggl[ 1 - \exp{ \biggl( - \frac{w_s h}{\varepsilon}} \biggr) \biggr] | |||
</math>|2}} | |||
The reference | where <math>U</math> is the depth-averaged current velocity, <math>h</math> is the total water depth, <math>\omega_s</math> is the sediment fall velocity, <math> | ||
{{Equation|<math> c_R = A_{cR} \exp{ \biggl( - 4.5 \frac{\theta_{cr}}{\theta_{cw}}} \biggr) | \varepsilon </math> is the sediment diffusivity, and <math>c_R</math> is the reference bed concentration. The reference bed concentration is calculated from | ||
{{Equation|<math>c_R = A_{cR} \exp{ \biggl( - 4.5 \frac{\theta_{cr}}{\theta_{cw}}} \biggr)</math>|3}} | |||
where the coefficient <math>A_{cR}</math> is given by | where the coefficient <math>A_{cR}</math> is given by | ||
{{Equation|<math> A_{cR} = 3. | {{Equation|<math>A_{cR} = 3.5 \times 10^3 \exp{ \bigl( - 0.3 D_{*} } \bigr) </math>|4}} | ||
where <math> \nu </math> the kinematic viscosity of water, and <math>D_{*} </math>the dimensionless grain size | |||
{{Equation|<math>D_{*} = d_{50} \biggl[ \frac{(s-1) g}{ \nu} \biggr] </math>|5}} | |||
The sediment fall velocity is calculated using the formula by Soulsby (1997) | |||
{{Equation| | |||
<math> | |||
\omega_s = \frac{\nu}{d} \bigg[ \big( 10.36^2 + 1.049 D_{*}^3 \big)^{1/2} -10.36 \bigg] | |||
</math>|6}} | |||
The sediment mixing coefficient is calculated as | The sediment mixing coefficient is calculated as | ||
{{Equation|<math> \epsilon = h \biggl( \frac{k_b^3 D_b + k_c^3 D_c + k_w^3 D_w}{\rho} \biggr)^{1/3} </math>| | {{Equation|<math>\epsilon = h \biggl( \frac{k_b^3 D_b + k_c^3 D_c + k_w^3 D_w}{\rho} \biggr)^{1/3}</math>|7}} | ||
where <math>k_b, k_c, and k_w</math> are coefficients, <math>D_b</math> is the wave breaking dissipation, and <math>D_c</math> and <math>D_w</math> are the bottom friction dissipation due to currents and waves respectively. For more details see Camenen and Larson (2008). | |||
= van Rijn = | |||
The van Rijn (1984ab) transport equations are used with the recalibrated coefficients of van Rijn (2007ab) are given by | |||
{{Equation|<math> | |||
q_b = 0.015 \rho_s U h | |||
\biggl( \frac{U_e - U_{cr} }{ \sqrt{(s-1) g d_{50}} } \biggr)^{1.5} | |||
\biggl( \frac{d_{50}}{h} \biggr)^{1.2} | |||
</math>|8}} | |||
{{Equation|<math> | |||
q_s = 0.012 \rho_s U d_{50} | |||
\biggl( \frac{U_e - U_{cr} }{ \sqrt{(s-1) g d_{50}}} \biggr)^{2.4} | |||
D_{*}^{-0.6} | |||
</math>|9}} | |||
where <math>U_{cr}</math> is the critical depth-averaged velocity for initiation of motion, <math>U_e</math> is the effective depth averaged velocity calculated as <math>U_e = U + 0.4 U_w</math> in which <math> U_w</math> is the peak orbital velocity based on the significant wave height | |||
The critical velocity is estimated as | |||
{{Equation|<math>U_{cr} = \beta U_{crc} + (1-\beta) U_{crw} </math>|10}} | |||
where <math>U_{crc}</math> and <math>U_{crw}</math> are the critical velocity for currents and waves respectively. As in van Rijn (2007), the critical velocity for currents and waves are calculated based on Komar and Miller (1975): | |||
= | {{Equation|<math> | ||
U_{crc} = | |||
\begin{cases} | |||
0.19 (d_{50})^{0.1} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.1 \le d_{50} \le 0.5 mm \\ | |||
8.5 (d_{50})^{0.6} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.5 \le d_{50} \le 2.0 mm | |||
\end{cases} | |||
</math>|11}} | |||
{{Equation|<math> | |||
U_{crw} = | |||
\begin{cases} | |||
0.24 [(s-1)g]^{0.66} (d_{50})^{0.33} T_p^{0.33} , & \text{for } 0.1 \le d_{50} \le 0.5 mm \\ | |||
0.95 [(s-1)g]^{0.57} (d_{50})^{0.43} T_p^{0.14}, & \text{for } 0.5 \le d_{50} \le 2.0 mm | |||
\end{cases} | |||
</math>|12}} | |||
According to van Rijn (2007) bed load transport formula predicts transport rates with a factor of 2 for velocities higher than 0.6 m/s, but underpredicts transports by a factor of 2-3 for velocities close to initiation of motion. | |||
= Watanabe = | |||
The equilibrium total load sediment transport rate of Watanabe (1987) is given by | The equilibrium total load sediment transport rate of Watanabe (1987) is given by | ||
{{Equation|<math> q_{t | {{Equation|<math> | ||
q_{t} = A_w \biggl[ \frac{(\tau_{b,max} - \tau_{cr}) U }{\rho g } \biggr] | |||
</math>|13}} | |||
where <math> \tau_{b,max} </math> is the maximum shear stress, <math> \tau_{cr} </math> is the critical shear stress of incipient motion, and <math> A </math> is an empirical coefficient typically ranging from 0.1 to 2. | where <math> \tau_{b,max} </math> is the maximum shear stress, <math> \tau_{cr} </math> is the critical shear stress of incipient motion, and <math> A </math> is an empirical coefficient typically ranging from 0.1 to 2. | ||
The critical shear stress is determined using | The critical shear stress is determined using | ||
{{Equation|<math> \tau_{cr} = (\rho_s - \rho) g d \phi_{cr} </math>| | {{Equation|<math>\tau_{cr} = (\rho_s - \rho) g d \phi_{cr} </math>|14}} | ||
In the case of currents only the bed shear stress is determined as <math> \tau_{c} = \frac{1}{8}\rho g f_c U_c^2 </math> where <math> f_c </math> is the current friction factor. The friction factor is calculated as <math> f_c = 0.24log^{-2}(12h/k_{sd}) </math> where <math> k_{sd} </math> is the Nikuradse equivalent sand roughness obtained from <math> k_{sd} = 2.5d_{50} </math>. | In the case of currents only the bed shear stress is determined as <math> \tau_{c} = \frac{1}{8}\rho g f_c U_c^2 </math> where <math> f_c </math> is the current friction factor. The friction factor is calculated as <math> f_c = 0.24log^{-2}(12h/k_{sd}) </math> where <math> k_{sd} </math> is the Nikuradse equivalent sand roughness obtained from <math> k_{sd} = 2.5d_{50} </math>. | ||
If waves are present, the maximum bed shear stress <math>\tau_{b,max} </math> is calculated based on Soulsby (1997) | If waves are present, the maximum bed shear stress <math>\tau_{b,max} </math> is calculated based on Soulsby (1997) | ||
{{Equation|<math> \tau_{max} = \sqrt{(\tau_m + \tau_w \cos{\phi})^2 + (\tau_w \sin{\phi})^2 } </math>| | {{Equation|<math>\tau_{max} = \sqrt{(\tau_m + \tau_w \cos{\phi})^2 + (\tau_w \sin{\phi})^2 }</math>|15}} | ||
where <math> \tau_m </math> is the mean shear stress by waves and current over a wave cycle, math> \tau_w </math> is the mean wave bed shear stress, and <math> \phi </math> is the angle between the waves and the current. The mean wave and current bed shear stress is | where <math> \tau_m </math> is the mean shear stress by waves and current over a wave cycle, math> \tau_w </math> is the mean wave bed shear stress, and <math> \phi </math> is the angle between the waves and the current. The mean wave and current bed shear stress is | ||
{{Equation|<math> \tau_{m} = \tau_c \biggl[ 1 + 1.2 \biggl( \frac{\tau_w}{\tau_c + \tau_c} \biggr)^{3.2} \biggr] | {{Equation|<math> | ||
\tau_{m} = \tau_c \biggl[ 1 + 1.2 \biggl( \frac{\tau_w}{\tau_c + \tau_c} \biggr)^{3.2} \biggr] | |||
</math>|16}} | |||
The wave bed shear stress is given by <math> \tau_{w} = \frac{1}{2}\rho g f_w U_w^2 </math> where <math> f_w </math> is the wave friction factor, and <math> U_w </math> is the wave orbital velocity amplitude based on the significant wave height. | The wave bed shear stress is given by <math> \tau_{w} = \frac{1}{2}\rho g f_w U_w^2 </math> where <math> f_w </math> is the wave friction factor, and <math> U_w </math> is the wave orbital velocity amplitude based on the significant wave height. | ||
The wave friction factor is calculated as (Nielsen 1992) <math>f_w = \exp{5.5R^{-0.2}-6.3}</math> where | The wave friction factor is calculated as (Nielsen 1992) <math>f_w = \exp{5.5R^{-0.2}-6.3}</math> where <math> R </math> is the relative roughness defined as <math> R = A_w/k_{sd} </math> and <math> A_w </math> is semi-orbital excursion <math> A_w = U_w T / (2 \pi) </math>. | ||
= Soulsby-van Rijn = | |||
Soulsby (1997) proposed the following equation for the total load sediment transport rate under currents and waves | |||
{{Equation|<math> | |||
q_t = A_s U \biggl[ \biggl( U^2 + 0.018 \frac{U_{rms}^2}{C_d} \biggr)^{0.5} - U_{cr} \biggr]^{2.4} | |||
</math>|20}} | |||
where | where <math>U_{rms}</math> is the root-mean-squared wave orbital velocity, and <math>C_d</math> is the drag coefficient due to currents alone and the coefficient <math> A_{s} = A_{sb} + A_{ss} </math>. The coefficients <math>A_{sb}</math> and <math>A_{ss}</math> are related to the bed and suspended transport loads respectively and are given by | ||
{{Equation|<math>A_{sb} = \frac{ 0.005 h (d_{50}/h)^{1.2} }{ [(s-1)g d_{50} ]^{1.2} } </math>|21}} | |||
{{Equation|<math>A_{s} = \frac{ 0.012 d_{50} D_{*}^{-0.6} }{ [(s-1)g d_{50} ]^{1.2} } </math>|22}} | |||
{{Equation|<math> | The current drag coefficient is calcualted as | ||
{{Equation|<math>C_d = \biggl[ \frac{0.4}{\ln{(h/z_0)}-1 } \biggr]^2 </math>|23}} | |||
with a constant bed roughness length <math>z_0 </math> set to 0.006 m. | |||
---- | ---- | ||
Line 71: | Line 134: | ||
|} | |} | ||
= References = | |||
* Camenen, B., and Larson, M. (2005). "A bed load sediment transport formula for the nearshore," Estuarine, Coastal and Shelf Science, 63, 249-260. | * Camenen, B., and Larson, M. (2005). "A bed load sediment transport formula for the nearshore," Estuarine, Coastal and Shelf Science, 63, 249-260. | ||
* Camenen, B., and Larson, M. (2007). "A unified sediment transport formulation for coastal inlet applications", ERDC/CHL-TR-06-7, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS. | * Camenen, B., and Larson, M. (2007). "A unified sediment transport formulation for coastal inlet applications", ERDC/CHL-TR-06-7, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS. | ||
* Camenen, B., and Larson, M., (2008). "A General Formula for Non-Cohesive Suspended Sediment Transport," Journal of Coastal Research, 24(3), 615-627. | * Camenen, B., and Larson, M., (2008). "A General Formula for Non-Cohesive Suspended Sediment Transport," Journal of Coastal Research, 24(3), 615-627. | ||
* Soulsby, D.H. (1997). "Dynamics of marine sands. A manual for practical applications," Thomas Telford Publications, London, England, 249 p. | * Soulsby, D.H. (1997). "Dynamics of marine sands. A manual for practical applications," Thomas Telford Publications, London, England, 249 p. | ||
* van Rijn, L. C. (1984a). "Sediment transport. Part I: Bed load transport", Journal of Hydraulic Engineering, 110(10), 1431–1456. | |||
* van Rijn, L. C. (1984b). "Sediment transport. Part II: Suspended loadtransport", Journal of Hydraulic Engineering, 110(11), 1613–1641. | |||
* van Rijn, L.C., (2007a). "Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport", Journal of Hydraulic Engineering, 133(6), 649-667. | |||
* van Rijn, L.C., (2007b). "Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport", Journal of Hydraulic Engineering, 133(6), 668-689. | |||
* Watanabe, A. (1987). "3-dimensional numerical model of beach evolution," Proceedings Coastal Sediments '87, ASCE, 802-817. | * Watanabe, A. (1987). "3-dimensional numerical model of beach evolution," Proceedings Coastal Sediments '87, ASCE, 802-817. | ||
---- | |||
[[CMS#Documentation Portal | Documentation Portal ]] |
Latest revision as of 15:23, 22 October 2012
Lund-CIRP
Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended load under combined waves and currents. These are refered to as the Lund-CIRP transport formulas. The general transport formulas can be used for both symmetric and asymmetric waves but for simplicity the waves are assumed to be symmetric in CMS. The bed load transport rate including the stirring effect of waves is given by
(1) |
where is in m^2/s, is the median grain size, is the sediment specific gravity or relative density, is gravitational constant, and are the mean and maximum Shields parameters due to waves and currents respectively, , is the critical Shields parameter due to currents, and are empirical coefficients.
The current-related suspended load transport with wave stirring is given by
(2) |
where is the depth-averaged current velocity, is the total water depth, is the sediment fall velocity, is the sediment diffusivity, and is the reference bed concentration. The reference bed concentration is calculated from
(3) |
where the coefficient is given by
(4) |
where the kinematic viscosity of water, and the dimensionless grain size
(5) |
The sediment fall velocity is calculated using the formula by Soulsby (1997)
|
(6) |
The sediment mixing coefficient is calculated as
(7) |
where are coefficients, is the wave breaking dissipation, and and are the bottom friction dissipation due to currents and waves respectively. For more details see Camenen and Larson (2008).
van Rijn
The van Rijn (1984ab) transport equations are used with the recalibrated coefficients of van Rijn (2007ab) are given by
(8) |
(9) |
where is the critical depth-averaged velocity for initiation of motion, is the effective depth averaged velocity calculated as in which is the peak orbital velocity based on the significant wave height
The critical velocity is estimated as
(10) |
where and are the critical velocity for currents and waves respectively. As in van Rijn (2007), the critical velocity for currents and waves are calculated based on Komar and Miller (1975):
(11) |
(12) |
According to van Rijn (2007) bed load transport formula predicts transport rates with a factor of 2 for velocities higher than 0.6 m/s, but underpredicts transports by a factor of 2-3 for velocities close to initiation of motion.
Watanabe
The equilibrium total load sediment transport rate of Watanabe (1987) is given by
(13) |
where is the maximum shear stress, is the critical shear stress of incipient motion, and is an empirical coefficient typically ranging from 0.1 to 2.
The critical shear stress is determined using
(14) |
In the case of currents only the bed shear stress is determined as where is the current friction factor. The friction factor is calculated as where is the Nikuradse equivalent sand roughness obtained from .
If waves are present, the maximum bed shear stress is calculated based on Soulsby (1997)
(15) |
where is the mean shear stress by waves and current over a wave cycle, math> \tau_w </math> is the mean wave bed shear stress, and is the angle between the waves and the current. The mean wave and current bed shear stress is
(16) |
The wave bed shear stress is given by where is the wave friction factor, and is the wave orbital velocity amplitude based on the significant wave height.
The wave friction factor is calculated as (Nielsen 1992) where is the relative roughness defined as and is semi-orbital excursion .
Soulsby-van Rijn
Soulsby (1997) proposed the following equation for the total load sediment transport rate under currents and waves
(20) |
where is the root-mean-squared wave orbital velocity, and is the drag coefficient due to currents alone and the coefficient . The coefficients and are related to the bed and suspended transport loads respectively and are given by
(21) |
(22) |
The current drag coefficient is calcualted as
(23) |
with a constant bed roughness length set to 0.006 m.
Symbol | Description | Units |
---|---|---|
Bed load transport rate | m3/s | |
Relative density | - | |
Shields parameter due to currents | - | |
Shields parameter due to waves and currents | - | |
Critical shields parameter | - | |
Empirical coefficient | - | |
Empirical coefficient | - | |
Current magnitude | m/s |
References
- Camenen, B., and Larson, M. (2005). "A bed load sediment transport formula for the nearshore," Estuarine, Coastal and Shelf Science, 63, 249-260.
- Camenen, B., and Larson, M. (2007). "A unified sediment transport formulation for coastal inlet applications", ERDC/CHL-TR-06-7, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
- Camenen, B., and Larson, M., (2008). "A General Formula for Non-Cohesive Suspended Sediment Transport," Journal of Coastal Research, 24(3), 615-627.
- Soulsby, D.H. (1997). "Dynamics of marine sands. A manual for practical applications," Thomas Telford Publications, London, England, 249 p.
- van Rijn, L. C. (1984a). "Sediment transport. Part I: Bed load transport", Journal of Hydraulic Engineering, 110(10), 1431–1456.
- van Rijn, L. C. (1984b). "Sediment transport. Part II: Suspended loadtransport", Journal of Hydraulic Engineering, 110(11), 1613–1641.
- van Rijn, L.C., (2007a). "Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport", Journal of Hydraulic Engineering, 133(6), 649-667.
- van Rijn, L.C., (2007b). "Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport", Journal of Hydraulic Engineering, 133(6), 668-689.
- Watanabe, A. (1987). "3-dimensional numerical model of beach evolution," Proceedings Coastal Sediments '87, ASCE, 802-817.