CMS-Flow:Incipient Motion: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
Deleted (talk | contribs)
No edit summary
Rdchldlj (talk | contribs)
No edit summary
Line 1: Line 1:
=Incipient Motion=
In the case of the Lund-CIRP (Camenen and Larson 2005, 2007, 2008) and Watanabe (1987) formulas, the incipient motion is based on the critical Shields parameter and estimated using the formula proposed by Soulsby (1997):


== Komar and Miller ==
{{Equation|<math>
Komar and Miller (1975):
\Theta_{cr} = \frac{0.3}{1 + 1.2d_*} + 0.055 \left[1 - exp(-0.02d_*)  \right]
</math>|1}}
 
in which the dimensionless grain size (d<sub>*</sub>) is defined


{{Equation|<math>
{{Equation|<math>
   U_{crc} =  
d_* = d \left[\frac{(s-1)g}{v^2}   \right]^{1/3}
  \begin{cases}  
</math>|2}}
0.19 (d_{50})^{0.1} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.1 \le d_{50} \le 0.5 mm \\  
 
8.5 (d_{50})^{0.6} \log{_{10} \big( \frac{4h}{d_{90}} \big) }, & \text{for } 0.5 \le d_{50} \le 2.0 mm
The critical shear stress for incipient motion is given by
  \end{cases}
 
</math>|11}}
{{Equation|<math>\frac{\tau_{cr}}{g(\rho_s - \rho)d} = \Theta_{cr}</math>|3}}
 
The critical depth-averaged velocity for currents alone (U<sub>crc</sub>) is calculated using the formula proposed by van Rijn (1984 c):
 
{{Equation|<math>U_{crc} =
\left\{
\begin{align}
&0.19 \ d_{50}^{0.1}log_{10}\left(\frac{4h}{d_{90}} \right), \quad\quad for \ 0.1 \leq d_{50} \leq 0.5 \ mm \\
&8.5 \ d_{50}^{0.6}log_{10}\left(\frac{4h}{d_{90}}   \right), \quad\quad for \ 0.5 \leq d_{50} \leq 2.0 \ mm
\end{align}
\right.
</math>|4}}
 
where d<sub>50</sub> and d<sub>90</sub> are the sediment grain size in meters of 50<sup>th</sup> and 90<sup>th</sup> percentiles, respectively. The above criteria are used in the van Rijn (2007 a,b) and Soulsby-van Rijn (Soulsby 1997) transport formulas.
 
The critical bottom orbital velocity magnitude for waves alone is calculated using the formulation of Komar and Miller (1975):
 


{{Equation|<math>
{{Equation|<math>
   U_{crw} =  
   U_{crw} =  
   \begin{cases}  
   \begin{cases}  
0.24 [(s-1)g]^{0.66} (d_{50})^{0.33} T_p^{0.33} , & \text{for } 0.1 \le d_{50} \le 0.5 mm \\  
0.24 [(s-1)g]^{0.66} (d_{50})^{0.33} T_p^{0.33} , & \text{for } 0.1 \le d_{50} \le 0.5 \ mm \\  
0.95 [(s-1)g]^{0.57} (d_{50})^{0.43} T_p^{0.14}, &  \text{for } 0.5 \le d_{50} \le 2.0 mm
0.95 [(s-1)g]^{0.57} (d_{50})^{0.43} T_p^{0.14}, &  \text{for } 0.5 \le d_{50} \le 2.0 \ mm
   \end{cases}
   \end{cases}
</math>|12}}
</math>|5}}
 
where T<sub>p</sub> is the peak wave period.


= References =  
= References =  

Revision as of 17:45, 30 October 2014

Incipient Motion

In the case of the Lund-CIRP (Camenen and Larson 2005, 2007, 2008) and Watanabe (1987) formulas, the incipient motion is based on the critical Shields parameter and estimated using the formula proposed by Soulsby (1997):

  Θcr=0.31+1.2d*+0.055[1exp(0.02d*)] (1)

in which the dimensionless grain size (d*) is defined

  d*=d[(s1)gv2]1/3 (2)

The critical shear stress for incipient motion is given by

  τcrg(ρsρ)d=Θcr (3)

The critical depth-averaged velocity for currents alone (Ucrc) is calculated using the formula proposed by van Rijn (1984 c):

  Ucrc={0.19 d500.1log10(4hd90),for 0.1d500.5 mm8.5 d500.6log10(4hd90),for 0.5d502.0 mm (4)

where d50 and d90 are the sediment grain size in meters of 50th and 90th percentiles, respectively. The above criteria are used in the van Rijn (2007 a,b) and Soulsby-van Rijn (Soulsby 1997) transport formulas.

The critical bottom orbital velocity magnitude for waves alone is calculated using the formulation of Komar and Miller (1975):


  Ucrw={0.24[(s1)g]0.66(d50)0.33Tp0.33,for 0.1d500.5 mm0.95[(s1)g]0.57(d50)0.43Tp0.14,for 0.5d502.0 mm (5)

where Tp is the peak wave period.

References


Documentation Portal