GenCade Val:Benchmark Cases: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 27: Line 27:
[[Image:Figure36.jpg|400px||thumb|Left|Figure 36. GenCade concave shoreline with no structures.]]
[[Image:Figure36.jpg|400px||thumb|Left|Figure 36. GenCade concave shoreline with no structures.]]
[[Image:Figure37.jpg|400px||thumb|Left|Figure 37. GenCade concave shoreline with two groins.]]
[[Image:Figure37.jpg|400px||thumb|Left|Figure 37. GenCade concave shoreline with two groins.]]
'''Model forcing: waves'''
Simulations of the standardized benchmark cases were conducted under various wave forcing. Constant wave forcing over the entire length of the simulation was initially examined for general investigation purposes. First constant waves with 0.75 m offshore wave height and 8 sec period were applied as forcing for both positive wave angles at +15-deg and negative wave angles at -15-deg. Wave forcing simulations were also conducted for constant zero-deg (i.e., shore normal) angles and simulations for all angles between +85-deg and -85-deg in 5-deg increments, but since the net shoreline change for these simulations results in zero change, they are not presented here. For all cases, wave inputs were supplied at the 50 m depth contour.
'''Model parameters'''
Wherever possible, the model parameters were held constant between each of the simulations in each domain category for purposes of consistency of comparison between simulations. Table 1 presents the model parameters common to all the standardized benchmark cases in the straight shoreline domains.
{| class="wikitable" border="1"
|+ Table 1. Model parameters common to all benchmark cases.
! Parameter !! Value
|-
| DX, m || 10
|-
| NX || 300 (Straight Domain); 360 (concave Domain)
|-
| DT, hr || 0.5
|-
| K1 || 0.5
|-
| K2 || 0.25
|-
| ISMOOTH, # Cells in Smoothing Window || 3
|-
| Non-Jetty boundary condition || Pinned
|}

Revision as of 20:06, 19 July 2013

Figure 29. GenCade straight shoreline with no structures domain.
Figure 30. GenCade straight shoreline with single groin domain.
Figure 29. GenCade straight shoreline with no structures domain.
Figure 30. GenCade straight shoreline with single groin domain.

A series of standardized test cases was developed to demonstrate isolated GenCade model capabilities and verify results against established legacy models (e.g., GENESIS). Simple idealized cases focusing on each of the primary model processes and coastal structures were evaluated separately.Isolation of individual modeled components is an effective means of examining the fundamental skill of a model and can be a practical tool for identifying potential errors, oversights, or omissions when investigating individual components of the model under simple idealized cases.A series of standardized test cases was developed to demonstrate isolated GenCade model capabilities and verify results against established legacy models (e.g., GENESIS). Simple idealized cases focusing on each of the primary model processes and coastal structures were evaluated separately. Isolation of individual modeled components is an effective means of examining the fundamental skill of a model and can be a practical tool for identifying potential errors, oversights, or omissions when investigating individual components of the model under simple idealized cases.

The standardized benchmark cases developed here are separated into the primary coastal structures and project components that are frequently applied in GenCade. Each of the cases is presented with a range in wave forcing to test symmetry of process calculation. GENESIS simulations were also developed following corresponding test cases to evaluate how GenCade results agree with the well-validated legacy model and to support user-confidence for the transfer and migration from GENESIS.

GenCade model setup

Model domain


Figure 31. GenCade straight shoreline with detached breakwater domain.
Figure 32. GenCade straight shoreline with T-head groin domain.
Figure 33. GenCade straight shoreline with seawall domain.
Figure 34. GenCade straight shoreline with beachfill domain.
Figure 35. GenCade straight shoreline with structured inlet domain.

Two categories of idealized model domains were developed for the standardized benchmark cases: straight shoreline domains and concave embayment domains. The purpose of the straight shoreline domains is to provide an uncomplicated foundation to test the most fundamental processes and the impact of coastal structures within the GenCade model. The purpose of the concave embayment domains is to examine the effects wave forcing and structures have on a continuous and uniform alongshore shoreline angle gradient and examine regional contour capabilities. Figures 29 through 35 show each of the seven domains in the straight shoreline category. Figure 29 represents the simplest case with a straight shoreline and no structures or project features within the domain. Figures 30 through 35 build upon this domain with the addition of individual coastal structures or project components. These structures or components include: a single groin (Figure 30), a detached breakwater (Figure 31), a T-head groin (Figure 32), a seawall with a groin to force shoreline erosion to the seawall (Figure 33), a beach fill project (Figure 34), and an inlet with jetties (Figure 35).

Figures 36 and 37 show the two domains in the concave shoreline category. The concave shorelines were developed using a simple quadratic formula to maintain symmetry. The quadratic function employed for these concave shorelines was:

y = ax2

where a = 10-4. Figure 36 represents a simple case with a concave shoreline and no structures or project features within the domain. Figure 37 builds upon this domain with the addition of two groins.

Figure 36. GenCade concave shoreline with no structures.
Figure 37. GenCade concave shoreline with two groins.


Model forcing: waves

Simulations of the standardized benchmark cases were conducted under various wave forcing. Constant wave forcing over the entire length of the simulation was initially examined for general investigation purposes. First constant waves with 0.75 m offshore wave height and 8 sec period were applied as forcing for both positive wave angles at +15-deg and negative wave angles at -15-deg. Wave forcing simulations were also conducted for constant zero-deg (i.e., shore normal) angles and simulations for all angles between +85-deg and -85-deg in 5-deg increments, but since the net shoreline change for these simulations results in zero change, they are not presented here. For all cases, wave inputs were supplied at the 50 m depth contour.


Model parameters

Wherever possible, the model parameters were held constant between each of the simulations in each domain category for purposes of consistency of comparison between simulations. Table 1 presents the model parameters common to all the standardized benchmark cases in the straight shoreline domains.


Table 1. Model parameters common to all benchmark cases.
Parameter Value
DX, m 10
NX 300 (Straight Domain); 360 (concave Domain)
DT, hr 0.5
K1 0.5
K2 0.25
ISMOOTH, # Cells in Smoothing Window 3
Non-Jetty boundary condition Pinned