CMS-Flow:Transport Formula
Lund-CIRP
Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended load under combined waves and currents.
Bed load
The current-related bed load transport with wave stirring is given by
(1) |
Suspended load
The current-related suspended load transport with wave stirring is given by
(2) |
The reference sediment concentration is obtained from
(3) |
where the coefficient is given by
(4) |
with being the dimensionless grain size and the kinematic viscosity of water.
The sediment mixing coefficient is calculated as
(5) |
van Rijn
The van Rijn (1984ab) transport equations are used with the recalibrated coefficients of van Rijn (2007ab).
(6) |
(7) |
where is the critical depth-averaged velocity for initiation of motion, is the effective depth averaged velocity calculated as in which is the peak orbital velocity based on the significant wave height
The critical velocity is estimated as
(7) |
where and are the critical velocity for currents and waves respectively. As in van Rijn (2007), the critical velocity for currents and waves are calculated based on Komar and Miller (1975):
(7) |
(7) |
According to van Rijn (2007) bed load transport formula predicts transport rates with a factor of 2 for velocities higher than 0.6 m/s, but underpredicts transports by a factor of 2-3 for velocities close to initiation of motion.
Watanabe
The equilibrium total load sediment transport rate of Watanabe (1987) is given by
(6) |
where is the maximum shear stress, is the critical shear stress of incipient motion, and is an empirical coefficient typically ranging from 0.1 to 2.
The critical shear stress is determined using
(6) |
In the case of currents only the bed shear stress is determined as where is the current friction factor. The friction factor is calculated as where is the Nikuradse equivalent sand roughness obtained from .
If waves are present, the maximum bed shear stress is calculated based on Soulsby (1997)
(6) |
where is the mean shear stress by waves and current over a wave cycle, math> \tau_w </math> is the mean wave bed shear stress, and is the angle between the waves and the current. The mean wave and current bed shear stress is
(6) |
The wave bed shear stress is given by where is the wave friction factor, and is the wave orbital velocity amplitude based on the significant wave height.
The wave friction factor is calculated as (Nielsen 1992) where
where is the relative roughness defined as and is semi-orbital excursion .
Soulsby-van Rijn
The equilibrium sediment concentration is calculated as (Soulsby 1997)
(7) |
where Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_{sb} = \frac{ 0.005 h (d_{50}/h)^{1.2} }{ [(s-1)g d_{50}} ]^{1.2} } } Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A_{s} = \frac{ 0.005 h d_{50} D_{*}^{-0.6} }{ [(s-1)g d_{50}} ]^{1.2} } }
Symbol | Description | Units |
---|---|---|
Bed load transport rate | m3/s | |
Relative density | - | |
Shields parameter due to currents | - | |
Shields parameter due to waves and currents | - | |
Critical shields parameter | - | |
Empirical coefficient | - | |
Empirical coefficient | - | |
Current magnitude | m/s |
References
- Camenen, B., and Larson, M. (2005). "A bed load sediment transport formula for the nearshore," Estuarine, Coastal and Shelf Science, 63, 249-260.
- Camenen, B., and Larson, M. (2007). "A unified sediment transport formulation for coastal inlet applications", ERDC/CHL-TR-06-7, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
- Camenen, B., and Larson, M., (2008). "A General Formula for Non-Cohesive Suspended Sediment Transport," Journal of Coastal Research, 24(3), 615-627.
- Soulsby, D.H. (1997). "Dynamics of marine sands. A manual for practical applications," Thomas Telford Publications, London, England, 249 p.
- van Rijn, L. C. (1984a). "Sediment transport. Part I: Bed load transport", Journal of Hydraulic Engineering, 110(10), 1431–1456.
- van Rijn, L. C. (1984b). "Sediment transport. Part II: Suspended loadtransport", Journal of Hydraulic Engineering, 110(11), 1613–1641.
- van Rijn, L.C., (2007a). "Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport", Journal of Hydraulic Engineering, 133(6), 649-667.
- van Rijn, L.C., (2007b). "Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport", Journal of Hydraulic Engineering, 133(6), 668-689.
- Watanabe, A. (1987). "3-dimensional numerical model of beach evolution," Proceedings Coastal Sediments '87, ASCE, 802-817.