Lund-CIRP
Camenen and Larson (2005, 2007, and 2008) developed a general sediment transport formula for bed and suspended load under combined waves and currents. These are refered to as the Lund-CIRP transport formulas. The general transport formulas can be used for both symmetric and asymmetric waves but for simplicity the waves are assumed to be symmetric in CMS. The bed load transport rate including the stirring effect of waves is given by
The current-related bed load transport with wave stirring is given by
|
|
(1)
|
where
is in m^2/s,
is the median grain size,
is the gravity,
is gravitational constant,
and
are the mean and maximum Shields parameters due to waves and currents respectively,
,
is the critical Shields parameter due to currents,
and
are empirical coefficients.
The current-related suspended load transport with wave stirring is given by
|
|
(2)
|
where
is the depth-averaged current velocity,
is the total water depth,
is the sediment fall velocity,
is the sediment diffusivity, and
is the reference bed concentration. The reference bed concentration is calculated from
|
|
(3)
|
where the coefficient
is given by
|
|
(4)
|
where
the kinematic viscosity of water, and
the dimensionless grain size
|
|
(5)
|
The sediment fall velocity is calculated using the formula by Soulsby (1997)
|
|
(6)
|
The sediment mixing coefficient is calculated as
|
|
(7)
|
where
are coefficients,
is the wave breaking dissipation, and
and
are the bottom friction dissipation due to currents and waves respectively. For more details see Camenen and Larson (2008).
van Rijn
The van Rijn (1984ab) transport equations are used with the recalibrated coefficients of van Rijn (2007ab) are given by
|
|
(8)
|
|
|
(9)
|
where
is the critical depth-averaged velocity for initiation of motion,
is the effective depth averaged velocity calculated as
in which
is the peak orbital velocity based on the significant wave height
The critical velocity is estimated as
|
|
(7)
|
where
and
are the critical velocity for currents and waves respectively. As in van Rijn (2007), the critical velocity for currents and waves are calculated based on Komar and Miller (1975):
|
|
(7)
|
|
|
(7)
|
According to van Rijn (2007) bed load transport formula predicts transport rates with a factor of 2 for velocities higher than 0.6 m/s, but underpredicts transports by a factor of 2-3 for velocities close to initiation of motion.
Watanabe
The equilibrium total load sediment transport rate of Watanabe (1987) is given by
|
|
(6)
|
where
is the maximum shear stress,
is the critical shear stress of incipient motion, and
is an empirical coefficient typically ranging from 0.1 to 2.
The critical shear stress is determined using
|
|
(6)
|
In the case of currents only the bed shear stress is determined as
where
is the current friction factor. The friction factor is calculated as
where
is the Nikuradse equivalent sand roughness obtained from
.
If waves are present, the maximum bed shear stress
is calculated based on Soulsby (1997)
|
|
(6)
|
where
is the mean shear stress by waves and current over a wave cycle, math> \tau_w </math> is the mean wave bed shear stress, and
is the angle between the waves and the current. The mean wave and current bed shear stress is
|
|
(6)
|
The wave bed shear stress is given by
where
is the wave friction factor, and
is the wave orbital velocity amplitude based on the significant wave height.
The wave friction factor is calculated as (Nielsen 1992)
where
where
is the relative roughness defined as
and
is semi-orbital excursion
.
Soulsby-van Rijn
The equilibrium sediment concentration is calculated as (Soulsby 1997)
|
|
(7)
|
where
Symbol |
Description |
Units
|
 |
Bed load transport rate |
m3/s
|
 |
Relative density |
-
|
 |
Shields parameter due to currents |
-
|
 |
Shields parameter due to waves and currents |
-
|
 |
Critical shields parameter |
-
|
 |
Empirical coefficient |
-
|
 |
Empirical coefficient |
-
|
 |
Current magnitude |
m/s
|
References
- Camenen, B., and Larson, M. (2005). "A bed load sediment transport formula for the nearshore," Estuarine, Coastal and Shelf Science, 63, 249-260.
- Camenen, B., and Larson, M. (2007). "A unified sediment transport formulation for coastal inlet applications", ERDC/CHL-TR-06-7, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS.
- Camenen, B., and Larson, M., (2008). "A General Formula for Non-Cohesive Suspended Sediment Transport," Journal of Coastal Research, 24(3), 615-627.
- Soulsby, D.H. (1997). "Dynamics of marine sands. A manual for practical applications," Thomas Telford Publications, London, England, 249 p.
- van Rijn, L. C. (1984a). "Sediment transport. Part I: Bed load transport", Journal of Hydraulic Engineering, 110(10), 1431–1456.
- van Rijn, L. C. (1984b). "Sediment transport. Part II: Suspended loadtransport", Journal of Hydraulic Engineering, 110(11), 1613–1641.
- van Rijn, L.C., (2007a). "Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport", Journal of Hydraulic Engineering, 133(6), 649-667.
- van Rijn, L.C., (2007b). "Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport", Journal of Hydraulic Engineering, 133(6), 668-689.
- Watanabe, A. (1987). "3-dimensional numerical model of beach evolution," Proceedings Coastal Sediments '87, ASCE, 802-817.
Documentation Portal