CMS: Difference between revisions

From CIRPwiki
Jump to navigation Jump to search
Line 43: Line 43:
----
----
*'''Hydrodynamics'''
*'''Hydrodynamics'''
**[[CMS-Flow Hydrodnamics: Variable_Definitions|Variable_Definitions]]
**[[CMS-Flow:Hydro_Eqs|Governing Equations]]
**[[CMS-Flow:Hydro_Eqs|Governing Equations]]
**[[CMS-Flow:Bottom_Friction|Bed Shear Stresses]]
**[[CMS-Flow:Bottom_Friction|Bed Shear Stresses]]

Revision as of 19:08, 28 July 2014

__notitle__

Coastal Modeling System

Rudee Inlet

An Advanced Engineering Tool

The Coastal Modeling System is an integrated suite of numerical models for simulating flow, waves, sediment transport, and morphology change in coastal areas. The system is designed for practical applications in navigation channel performance and sediment management for coastal inlets and adjacent beaches in order to improve the usage of USACE Operation and Maintenance Funds. The CMS is intended as a research and engineering tool that can be used on desk-top computers. The CMS takes advantage of the Surface-water Modeling System (SMS) interface for grid generation and model setup, as well as plotting and post-processing.

  • Background

The CMS has been a research and development area of the Coastal Inlets Research Program (CIRP) at the United States Army Corps of Engineers - Engineering Research and Development Center (USACE-ERDC), Coastal and Hydraulics Laboratory (CHL) since 2006. It was built from a group of numerical models that have been under development since 2002. Information on the CIRP and publications on the CMS can be found at the CIRP Website.

  • Key Features
  • Fully integrated system
  1. CMS-Flow - Inline flow, sediment and salinity model
  2. CMS-Wave - Spectral wave transformation model
  • Finite Volume Method - Mass conservative
  • Non-uniform Cartesian Grid - Easy to setup and run
  • Telescoping Cartesian Grid - Flexible, efficient, and easier to generate than unstructured meshes
  • Supports most common types of forcing and boundary conditions
  • Robust numerical schemes for reliable, crash-free simulations
  • Parallelization on desktop computers for fast computation
  • User-friendly interface

System Components

CMS components.PNG

CMS-Flow is a coupled hydrodynamic and sediment transport model capable of simating depth-averaged circulation, salinity and sediment transport due to tides, wind and waves. The hydrodynamic model sovles the conservative form of the shallow water equations and includes terms for the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom and friction, and turbulent diffusion. There are three sediment transport models available in CMS: a sediment mass balance model, an equilibrium advection diffusion model, and non-equilibrium advection-diffusion model. The salinity transport is simulated with the standard advection diffusion model and includes evaporation and precipitaion. All equations are solved using the Finite Volume Method on a non-uniform Cartesian grid. For additional information on CMS-Flow visit CMS-Flow Main Page.

The CMS-Wave is a spectral wave transformation model and solves the steady-state wave-action balance equation on a non-uniform Cartesian grid. It considers wind wave generation and growth, diffraction, reflection, dissipation due to bottom friction, whitecapping and breaking, wave-wave and wave-current interactions, wave runup, wave setup, and wave transmission through structures. For additional information information on CMS-Wave visit CMS-Wave Main Page.



Documentation Portal

Technical Documentation



User Guide


CMS-Flow

CMS-Wave

CMS-Flow and CMS-Wave Model Coupling

Examples, applications and more


Workshops

Downloads


External Links:

  • US Army Engineer Research and Development Center - Ongoing Research [1]
  • Presentations (MVN Workshop - June 2009)
    • Coastal Modeling System (CMS) for Integrated Calculation of Waves, Flow, Sediment Transport, and Morphology Change [2]
    • Introduction to CMS-Wave [3]
    • Additional information on CMS-Flow capabilities [4]
    • CMS-Wave Demonstrations to Louisiana (Levees Muddy coast) [5]
    • Future of the CMS [6]
  • Aug 2008 Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change [7]

{{#rawmsg:back}}